Discussion
This study investigated the hypothesis that sensory processing, as measured by the adolescent/adult sensory profile, would differ among parents of typically developing children and parents of children with ASD from SPX and MPX families. Results supported this hypothesis by showing that, after controlling for gender and mental disorders, MPX parents scored significantly lower than P-TD parents in Sensory Seeking, and significantly higher than P-TD parents in the Low Registration, Sensation Avoidance, and Sensory Sensitivity quadrants of the AASP. Upon investigating each modality separately, it was found that the primary results were influenced mostly by scores in the auditory and visual modalities. Differences between SPX and MPX parents reached significance in the Sensory Sensitivity quadrant of the primary analyses, and also in various auditory and visual quadrant scores of the secondary analyses. Our findings that parents with high genetic liability for ASD-related genes (MPX) had more sensory atypicalities than parents with low (SPX) or no (P-TD) genetic liability for ASD suggest that atypical sensory processing may contribute to the genetic susceptibility for ASD. Our conclusions align with recent genetics research suggesting that sensory processing atypicalities may share genetic influences with ASD (DeLorey et al.
2011; Peñagarikano et al.
2011; Tavassoli et al.
2012). Whether sensory processing atypicalities represent an increased risk for ASD specifically, or instead an increased risk for a range of mental disorders (only one of which is ASD), is yet to be verified.
Results from the present study confirm Uljarević et al.’s (
2014) past findings that parents of children with ASD had more sensory processing atypicalities than the norm. Although we replicated these general findings, effects in our study were found only in MPX parents of ASD children, while SPX parents scored similarly to P-TD parents. Uljarević et al.’s finding that 44 % of mothers of ASD children scored in the extreme outer percentiles (i.e., > 2 SDs outside the norm) in at least one quadrant is somewhat similar to our results concerning the percentage of MPX parents that scored in the extreme outer percentiles (53 %), but in contrast to results from the SPX (27 %) and P-TD (20 %) parent groups in our study. It is crucial to note that these percentages are not corrected for potentially confounding variables, namely gender and mental disorders, and therefore it is difficult to make valid comparisons based on these data alone. However, after stringent statistical testing including controlling for these variables, we continued to find effects in MPX parents only, whereas scores from SPX parents did not statistically differ from P-TD parents in any primary analysis. Our results showing increased sensory processing atypicalities in MPX parents compared to SPX and P-TD parents offer genetic explanations for Uljarević et al.’s findings, and also support De la Marche et al.’s (
2012) conclusion that decreased Sensation Seeking may be an intermediate phenotype of ASD.
Our findings that the auditory and visual modalities showed the largest group effects may be due the crucial involvement of auditory and visual processing in social communication. Successful interpretation of social communication relies on sufficient processing of auditory cues, visual cues, and audio–visual integration, thus emphasizing the relevance of atypical auditory and visual processing in ASD studies. In addition to ASD-specific explanations, it is also possible that group effects were found mostly in the auditory and visual modalities due to factors relating to self-report sensory questionnaires. Considering that reactions experienced in the auditory and visual modalities are verbalized more often than other modalities, participants may have more difficulty in identifying, recalling, or reporting reactions experienced in the other senses.
Our preliminary findings concerning effects of mental disorders are consistent with previous studies that found a relationship between sensory processing abnormalities and various types of mental disorders and disorder symptoms (Ashburner et al.
2008; Brown et al.
2002; Engel-Yeger and Dunn
2011; Engel-Yeger et al.
2013; Mangeot et al.
2001; Rieke and Anderson
2009). Given that (a) ASD probands and their families have an increased chance of having other heritable mental disorders in addition to ASD (e.g., Bolton et al.
1998; Daniels et al.
2008; DeLong and Nohna
1994; Piven and Palmer
1999) and that (b) many of these mental disorders are also related to atypical sensory processing (e.g., Brown et al.
2002; Engel-Yeger et al.
2013; Rieke and Anderson
2009), it remains uncertain whether the increased sensory processing atypicalities observed in MPX parents in our study are related to an increase in genetic susceptibility for ASD specifically, or instead are related to an increased risk for a range of mental disorders. Regardless of whether sensory processing atypicalities are
specific to ASD, our findings nevertheless support previous evidence implying that abnormal sensory processing and ASD may share genetic influences.
Preliminary results from this study support recent studies showing that females scored significantly higher than males on sensory processing questionnaires (Engel-Yeger
2012; Horder et al.
2014; Tavassoli et al.
2014), which contributes to the accumulating evidence demonstrating gender differences in sensory processing (Velle
1987). In addition to gender differences that are specific to the female sensory systems, it is also possible that our results concerning gender effects may be partially due to cognitive differences or differences in self-disclosure. For instance, females are found to have a better memory for recognizing and identifying odors (Brand and Millot
2001) and are more likely to disclose personal information than males (Dindia and Allen
1992). Although these explanations might account for the gender effects found in our study and are interesting for future investigations, they cannot explain our main conclusions concerning differences in ASD genetic liability, considering that gender was distributed evenly among all three groups and was controlled for in all main analyses.
Throughout all analyses, there was a linear (though at times non-significant) trend in which atypical sensory scores increased as the amount of presumed genetic liability for ASD increased: P-TD parents had fewer sensory atypicalities than SPX parents, who in turn had less sensory atypicalities than MPX parents. A likely explanation for the slight increase in scores in the SPX group is that some parents who were originally designated to this group might in fact have ASD genetic mechanisms more similar to the traditional assumptions of MPX families (i.e., familial ASD-related traits) than those of SPX (i.e., isolated genetic mutations), which is a common concern in SPX/MPX studies (e.g., Klei et al.
2012). In addition to general uncertainty of mental disorder status of all biological relatives, another factor contributing to group misplacement could be the “stoppage effect,” which occurs when a family ceases child-bearing after an ASD diagnosis is discovered in one of their children (Jones and Szatmari
1988). This effect questions a family’s SPX classification, as it is unknown how future children would have developed. Another possible explanation for group misplacement is that some relatives within SPX families could have pronounced ASD traits without an official ASD diagnosis, and therefore would not be recognized in our family history questionnaire. SPX families with prevalent ASD traits (albeit no official diagnoses) would better fit the genetic profile of MPX families than that of SPX. Considering these various situations, it is possible that some SPX parents may have had unrealized MPX status, thus causing a slight increase in overall sensory atypicalities in this group.
Past studies investigating intermediate phenotypes in relatives of ASD individuals have already identified numerous heritable traits that may increase genetic vulnerability for ASD, including social/emotional abnormalities (e.g., Gerdts et al.
2013), pragmatic language impairments (e.g., Whitehouse et al.
2007), stereotyped behaviors (e.g., Piven et al.
1997), and even certain personality traits (Losh et al.
2008; Murphy et al.
2000; Piven et al.
1994). Findings from the present study suggest that atypical sensory processing might be an additional heritable trait contributing to ASD susceptibility. Assuming that each heritable trait of ASD is expressed as a result of variations in specific genes related to ASD susceptibility (Piven
2001), then it is plausible that an increase in the number of inherited ASD-related genetic variations would additively increase vulnerability of developing ASD. Along these lines, Klei et al. (
2012) found that many common genetic variations that have small effect in isolation, have large effects on ASD susceptibility when acting additively. These additive effects were found more often in relatives from MPX ASD families (60 %) than from SPX ASD families (40 %), thus implying that ASD cases from MPX families may result largely from the additive effect of numerous ASD-related genetic variations of small influence. It may be that some of these common genetic variations give rise to the ASD-like traits often observed in relatives of ASD probands. Considering that sensory processing atypicalities are now part of the ASD diagnostic category of restricted repetitive behaviors (APA
2013) and are strongly associated with autistic traits in both ASD (Boyd et al.
2009; Wigham et al.
2015) and non-ASD populations (Robertson and Simmons
2013; Horder et al.
2014), the results from the present study imply that atypical sensory processing might be an additional potential BAP trait worthy of future investigations, which could further aid in the search for genetic variations responsible for ASD.
In addition to theoretical implications concerning atypical sensory processing and ASD genetic liability, the current study also has important practical implications. Regardless of the exact causes behind these results, our findings show that many parents of ASD children perceive the sensory world differently than most people, which, in extreme cases, could result in difficulties in many areas of daily functioning. According to personal accounts from individuals with ASD, severe sensory reactions can encourage social withdrawal and reduce participation in many activities (Grandin
1992; Kirby et al.
2015), a consequence which influences the individual’s general social/communication functioning. These consequences may also apply to some MPX parents, considering that the overall pattern of sensory atypicalities seen in MPX parents in this study (i.e., lower than controls in S. Seeking and higher in the remaining three quadrants) directly corresponds to the sensory pattern found in adults diagnosed with ASD (Crane et al.
2009).
Apart from affecting social functioning, sensory processing difficulties have also been associated with anxiety symptoms (Engel-Yeger and Dunn
2011; Kinnealey and Fuiek
1999), depression symptoms (Liss et al.
2005; Kinnealey and Fuiek
1999), sleep quality (Engel-Yeger and Shochat
2012), and even physical health symptoms (Benham
2006). Although these associations do not imply causation, they nevertheless demonstrate that many parents of ASD children who have sensory symptoms likely have additional problems affecting their well-being. While it is standard practice to treat sensory symptoms in children diagnosed with ASD, the present study suggests that their parents could also benefit from understanding and alleviating their own sensory difficulties. This would not only improve the parent’s well-being, but could also improve their child’s well-being, by enabling a more nurturing and enriching environment in which the child could develop into his or her highest potential.
Although this study’s sample size was relatively large [i.e., three times the size of past studies using the AASP in ASD relatives (De la Marche et al.
2012; Uljarević et al.
2014)], thus emphasizing the validity of these findings, there are a few limitations concerning the sample that should be addressed. First, we relied on self-reports of mental diagnoses of the participant, their children, and—due to our expanded definition of MPX families—their biological relatives. Validity of these diagnoses is crucial, as the diagnostic statuses of the participant’s child and biological relatives created the distinction among the three study groups, and the participant’s own diagnoses were found to have large effects on AASP scores in preliminary analyses. Diagnostic evaluations by clinicians of the parents, their children, and their relatives would have been better to ensure accuracy of ASD diagnoses in the ASD groups, and also to guarantee a well-controlled comparison group. However, we did make an effort to alleviate the latter concern by excluding parents from the P-TD group who had suspicions that their child might have ASD or who reported that they had a biological relative with ASD. In addition, it is important to note that participants in the ASD-affected parent groups were recruited from official ASD organizations where diagnoses by a licensed professional are administered, required, or assumed. Therefore, although ASD diagnoses of the children with ASD could not be directly confirmed, our manner of recruitment increases confidence that a participant’s child likely received a confirmed diagnosis of ASD by a licensed professional if the parent reported so on the questionnaire.
Clinical diagnostic evaluations of the participants would have not only confirmed their current mental disorders, but could have also provided information regarding their sub-clinical disorder
symptoms. As sensory processing abnormalities were found to be associated with symptoms of several mental disorders (e.g., Dar et al.
2012; Engel-Yeger and Dunn
2011; Horder et al.
2014; Liss et al.
2005), it remains uncertain whether subclinical symptoms in the parents could have partially explained our results. Addressing this limitation in future research is imperative in order to better understand the extent to which sensory processing abnormalities are specific to ASD genetic liability.
A general limitation of using sensory questionnaires is the reliance on self-reported subjective reactions to sensory experiences, which requires honest and reliable introspection. Furthermore, the AASP has been criticized for including sensory items that are associated with affective or social reactions (Tavassoli et al.
2014). For these reasons, supplementary sensory processing measurements involving objective physiological tests are recommended to accompany self-report questionnaires, although this was unfortunately not an option for the present online study. Despite potential limitations of the AASP, the present study nonetheless produced significant findings, which is a valuable advancement towards understanding how atypical sensory processing may relate to the genetic liability for ASD.
Future research should replicate the present study’s results with use of professional diagnostic evaluations and additional objective sensory measurements, such as measuring behavioral or physiological reactions to sensory stimuli. Given that this study used online questionnaires to understand traits contributing to ASD genetic liability, evident next steps also include genetic association studies to discover the genes underpinning our results, similar to the pilot study by Tavassoli et al. (
2012).
Through investigating the many traits of the broader autism phenotype and eventually discovering their genetic etiology, we can improve genetics research and gradually move closer toward a global understanding of ASD. Findings from the present study contribute to this effort by suggesting that atypical sensory processing may be one of the heritable traits contributing to ASD susceptibility, which is worthy of future investigations.