Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2013

01-05-2013 | Original Article

Improved motor sequence retention by motionless listening

Auteurs: Amir Lahav, Tal Katz, Roxanne Chess, Elliot Saltzman

Gepubliceerd in: Psychological Research | Uitgave 3/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

This study examined the effect of listening to a newly learned musical piece on subsequent motor retention of the piece. Thirty-six non-musicians were trained to play an unfamiliar melody on a piano keyboard. Next, they were randomly assigned to participate in three follow-up listening sessions over 1 week. Subjects who, during their listening sessions, listened to the same initial piece showed significant improvements in motor memory and retention of the piece despite the absence of physical practice. These improvements included increased pitch accuracy, time accuracy, and dynamic intensity of key pressing. Similar improvements, though to a lesser degree, were observed in subjects who, during their listening sessions, were distracted by another task. Control subjects, who after learning the piece had listened to nonmusical sounds, showed impaired motoric retention of the piece at 1 week from the initial acquisition day. These results imply that motor sequences can be established in motor memory without direct access to motor-related information. In addition, the study revealed that the listening-induced improvements did not generalize to the learning of a new musical piece composed of the same notes as the initial piece learned, limiting the effects to musical motor sequences that are already part of the individual’s motor repertoire.
Literatuur
go back to reference Abravanel, E., & Ferguson, S. A. (1998). Observational learning and the use of retrieval information during the second and third years. Journal of Genetic Psychology, 159(4), 455–476.PubMedCrossRef Abravanel, E., & Ferguson, S. A. (1998). Observational learning and the use of retrieval information during the second and third years. Journal of Genetic Psychology, 159(4), 455–476.PubMedCrossRef
go back to reference Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience, 19(9), 2609–2612.PubMedCrossRef Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience, 19(9), 2609–2612.PubMedCrossRef
go back to reference Bangert, M., & Altenmuller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4, 26.PubMedCrossRef Bangert, M., & Altenmuller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4, 26.PubMedCrossRef
go back to reference Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage, 30(3), 917–926.PubMedCrossRef Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage, 30(3), 917–926.PubMedCrossRef
go back to reference Bird, G., Osman, M., Saggerson, A., & Heyes, C. (2005). Sequence learning by action, observation and action observation. British Journal of Psychology, 96(Pt 3), 371–388.PubMedCrossRef Bird, G., Osman, M., Saggerson, A., & Heyes, C. (2005). Sequence learning by action, observation and action observation. British Journal of Psychology, 96(Pt 3), 371–388.PubMedCrossRef
go back to reference Bonaiuto, J., Rosta, E., & Arbib, M. (2007). Extending the mirror neuron system model, I. Audible actions and invisible grasps. Biological Cybernetics, 96(1), 9–38.PubMedCrossRef Bonaiuto, J., Rosta, E., & Arbib, M. (2007). Extending the mirror neuron system model, I. Audible actions and invisible grasps. Biological Cybernetics, 96(1), 9–38.PubMedCrossRef
go back to reference Boschker, M. S., & Bakker, F. C. (2002). Inexperienced sport climbers might perceive and utilize new opportunities for action by merely observing a model. Perceptual and Motor Skills, 95(1), 3–9.PubMedCrossRef Boschker, M. S., & Bakker, F. C. (2002). Inexperienced sport climbers might perceive and utilize new opportunities for action by merely observing a model. Perceptual and Motor Skills, 95(1), 3–9.PubMedCrossRef
go back to reference Brown, J. C., Houix, O., & McAdams, S. (2001). Feature dependence in the automatic identification of musical woodwind instruments. Journal of the Acoustical Society of America, 109(3), 1064–1072.PubMedCrossRef Brown, J. C., Houix, O., & McAdams, S. (2001). Feature dependence in the automatic identification of musical woodwind instruments. Journal of the Acoustical Society of America, 109(3), 1064–1072.PubMedCrossRef
go back to reference Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Brain Research Cognitive Brain Research, 24(3), 355–363.PubMedCrossRef Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Brain Research Cognitive Brain Research, 24(3), 355–363.PubMedCrossRef
go back to reference Callan, D. E., Kent, R. D., Guenther, F. H., & Vorperian, H. K. (2000). An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system. Journal of Speech, Language, and Hearing Research, 43(3), 721–736.PubMed Callan, D. E., Kent, R. D., Guenther, F. H., & Vorperian, H. K. (2000). An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system. Journal of Speech, Language, and Hearing Research, 43(3), 721–736.PubMed
go back to reference Celnik, P., Stefan, K., Hummel, F., Duque, J., Classen, J., & Cohen, L. G. (2006). Encoding a motor memory in the older adult by action observation. Neuroimage, 29(2), 677–684.PubMedCrossRef Celnik, P., Stefan, K., Hummel, F., Duque, J., Classen, J., & Cohen, L. G. (2006). Encoding a motor memory in the older adult by action observation. Neuroimage, 29(2), 677–684.PubMedCrossRef
go back to reference Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.PubMedCrossRef Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.PubMedCrossRef
go back to reference Chen, J. L., Rae, C., & Watkins, K. E. (2012). Learning to play a melody: An fMRI study examining the formation of auditory–motor associations. Neuroimage, 59(2), 1200–1208.PubMedCrossRef Chen, J. L., Rae, C., & Watkins, K. E. (2012). Learning to play a melody: An fMRI study examining the formation of auditory–motor associations. Neuroimage, 59(2), 1200–1208.PubMedCrossRef
go back to reference Cisek, P., & Kalaska, J. F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431(7011), 993–996.PubMedCrossRef Cisek, P., & Kalaska, J. F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431(7011), 993–996.PubMedCrossRef
go back to reference Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. Neuroimage, 31(3), 1257–1267.PubMedCrossRef Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. Neuroimage, 31(3), 1257–1267.PubMedCrossRef
go back to reference Cross, E. S., Kraemer, D. J., Hamilton, A. F., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.PubMedCrossRef Cross, E. S., Kraemer, D. J., Hamilton, A. F., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.PubMedCrossRef
go back to reference D’Ausilio, A., Altenmuller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24(3), 955–958.PubMedCrossRef D’Ausilio, A., Altenmuller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24(3), 955–958.PubMedCrossRef
go back to reference Drake, C., & Palmer, C. (2000). Skill acquisition in music performance: Relations between planning and temporal control. Cognition, 74(1), 1–32.PubMedCrossRef Drake, C., & Palmer, C. (2000). Skill acquisition in music performance: Relations between planning and temporal control. Cognition, 74(1), 1–32.PubMedCrossRef
go back to reference Drost, U. C., Rieger, M., Brass, M., Gunter, T. C., & Prinz, W. (2005). When hearing turns into playing: movement induction by auditory stimuli in pianists. Quarterly Journal of Experimental Psychology A, 58(8), 1376–1389. Drost, U. C., Rieger, M., Brass, M., Gunter, T. C., & Prinz, W. (2005). When hearing turns into playing: movement induction by auditory stimuli in pianists. Quarterly Journal of Experimental Psychology A, 58(8), 1376–1389.
go back to reference Ertelt, D., Small, S., Solodkin, A., Dettmers, C., McNamara, A., Binkofski, F., et al. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage, 36(Suppl 2), T164–T173.PubMedCrossRef Ertelt, D., Small, S., Solodkin, A., Dettmers, C., McNamara, A., Binkofski, F., et al. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage, 36(Suppl 2), T164–T173.PubMedCrossRef
go back to reference Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15(2), 399–402.PubMedCrossRef Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15(2), 399–402.PubMedCrossRef
go back to reference Ferrari, P. F., Maiolini, C., Addessi, E., Fogassi, L., & Visalberghi, E. (2005). The observation and hearing of eating actions activates motor programs related to eating in macaque monkeys. Behavioural Brain Research, 161(1), 95–101.PubMedCrossRef Ferrari, P. F., Maiolini, C., Addessi, E., Fogassi, L., & Visalberghi, E. (2005). The observation and hearing of eating actions activates motor programs related to eating in macaque monkeys. Behavioural Brain Research, 161(1), 95–101.PubMedCrossRef
go back to reference Finney, S. A., & Palmer, C. (2003). Auditory feedback and memory for music performance: Sound evidence for an encoding effect. Memory & Cognition, 31(1), 51–64.CrossRef Finney, S. A., & Palmer, C. (2003). Auditory feedback and memory for music performance: Sound evidence for an encoding effect. Memory & Cognition, 31(1), 51–64.CrossRef
go back to reference Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology (Hove), 61(6), 825–850.CrossRef Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology (Hove), 61(6), 825–850.CrossRef
go back to reference Galati, G., Committeri, G., Spitoni, G., Aprile, T., Di Russo, F., Pitzalis, S., et al. (2008). A selective representation of the meaning of actions in the auditory mirror system. Neuroimage, 40(3), 1274–1286.PubMedCrossRef Galati, G., Committeri, G., Spitoni, G., Aprile, T., Di Russo, F., Pitzalis, S., et al. (2008). A selective representation of the meaning of actions in the auditory mirror system. Neuroimage, 40(3), 1274–1286.PubMedCrossRef
go back to reference Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824–1829.PubMedCrossRef Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824–1829.PubMedCrossRef
go back to reference Grezes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.PubMedCrossRef Grezes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.PubMedCrossRef
go back to reference Harrington, D. L., Rao, S. M., Haaland, K. Y., Bobholz, J. A., Mayer, A. R., Binderx, J. R., et al. (2000). Specialized neural systems underlying representations of sequential movements. Journal of Cognitive Neuroscience, 12(1), 56–77.PubMedCrossRef Harrington, D. L., Rao, S. M., Haaland, K. Y., Bobholz, J. A., Mayer, A. R., Binderx, J. R., et al. (2000). Specialized neural systems underlying representations of sequential movements. Journal of Cognitive Neuroscience, 12(1), 56–77.PubMedCrossRef
go back to reference Haslinger, B., Erhard, P., Altenmuller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17(2), 282–293.PubMedCrossRef Haslinger, B., Erhard, P., Altenmuller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17(2), 282–293.PubMedCrossRef
go back to reference Haueisen, J., & Knosche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience, 13(6), 786–792.PubMedCrossRef Haueisen, J., & Knosche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience, 13(6), 786–792.PubMedCrossRef
go back to reference Hauk, O., Shtyrov, Y., & Pulvermuller, F. (2006). The sound of actions as reflected by mismatch negativity: Rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements. European Journal of Neuroscience, 23(3), 811–821.PubMedCrossRef Hauk, O., Shtyrov, Y., & Pulvermuller, F. (2006). The sound of actions as reflected by mismatch negativity: Rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements. European Journal of Neuroscience, 23(3), 811–821.PubMedCrossRef
go back to reference Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory–motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15(5), 673–682.PubMed Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory–motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15(5), 673–682.PubMed
go back to reference Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69(3), 407–422.PubMedCrossRef Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69(3), 407–422.PubMedCrossRef
go back to reference Hlustik, P., Solodkin, A., Noll, D. C., & Small, S. L. (2004). Cortical plasticity during three-week motor skill learning. Journal of Clinical Neurophysiology, 21(3), 180–191.PubMedCrossRef Hlustik, P., Solodkin, A., Noll, D. C., & Small, S. L. (2004). Cortical plasticity during three-week motor skill learning. Journal of Clinical Neurophysiology, 21(3), 180–191.PubMedCrossRef
go back to reference Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behav Brain Sci, 24(5), 849–878. (discussion 878–937).PubMedCrossRef Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behav Brain Sci, 24(5), 849–878. (discussion 878–937).PubMedCrossRef
go back to reference Huang, C. T., & Charman, T. (2005). Gradations of emulation learning in infants’ imitation of actions on objects. Journal of Experimental Child Psychology, 92(3), 276–302.PubMedCrossRef Huang, C. T., & Charman, T. (2005). Gradations of emulation learning in infants’ imitation of actions on objects. Journal of Experimental Child Psychology, 92(3), 276–302.PubMedCrossRef
go back to reference Hund-Georgiadis, M., & von Cramon, D. Y. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125(4), 417–425.CrossRef Hund-Georgiadis, M., & von Cramon, D. Y. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125(4), 417–425.CrossRef
go back to reference Janelle, C. M., Champenoy, J. D., Coombes, S. A., & Mousseau, M. B. (2003). Mechanisms of attentional cueing during observational learning to facilitate motor skill acquisition. Journal of Sports Sciences, 21(10), 825–838.PubMedCrossRef Janelle, C. M., Champenoy, J. D., Coombes, S. A., & Mousseau, M. B. (2003). Mechanisms of attentional cueing during observational learning to facilitate motor skill acquisition. Journal of Sports Sciences, 21(10), 825–838.PubMedCrossRef
go back to reference Jones, J. A., & Munhall, K. G. (2005). Remapping auditory–motor representations in voice production. Current Biology, 15(19), 1768–1772.PubMedCrossRef Jones, J. A., & Munhall, K. G. (2005). Remapping auditory–motor representations in voice production. Current Biology, 15(19), 1768–1772.PubMedCrossRef
go back to reference Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158.PubMedCrossRef Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158.PubMedCrossRef
go back to reference Keller, P. E., & Koch, I. (2008). Action planning in sequential skills: Relations to music performance. Quarterly Journal of Experimental Psychology (Colchester), 61(2), 275–291.CrossRef Keller, P. E., & Koch, I. (2008). Action planning in sequential skills: Relations to music performance. Quarterly Journal of Experimental Psychology (Colchester), 61(2), 275–291.CrossRef
go back to reference Kelly, A. M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102.PubMedCrossRef Kelly, A. M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102.PubMedCrossRef
go back to reference Keysers, C., Kohler, E., Umilta, M. A., Nanetti, L., Fogassi, L., & Gallese, V. (2003). Audiovisual mirror neurons and action recognition. Experimental Brain Research, 153(4), 628–636.CrossRef Keysers, C., Kohler, E., Umilta, M. A., Nanetti, L., Fogassi, L., & Gallese, V. (2003). Audiovisual mirror neurons and action recognition. Experimental Brain Research, 153(4), 628–636.CrossRef
go back to reference Koelsch, S. (2005). Neural substrates of processing syntax and semantics in music. Current Opinion in Neurobiology, 15(2), 207–212.PubMedCrossRef Koelsch, S. (2005). Neural substrates of processing syntax and semantics in music. Current Opinion in Neurobiology, 15(2), 207–212.PubMedCrossRef
go back to reference Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846–848.PubMedCrossRef Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846–848.PubMedCrossRef
go back to reference Kristeva, R., Chakarov, V., Schulte-Monting, J., & Spreer, J. (2003). Activation of cortical areas in music execution and imagining: A high-resolution EEG study. Neuroimage, 20(3), 1872–1883.PubMedCrossRef Kristeva, R., Chakarov, V., Schulte-Monting, J., & Spreer, J. (2003). Activation of cortical areas in music execution and imagining: A high-resolution EEG study. Neuroimage, 20(3), 1872–1883.PubMedCrossRef
go back to reference Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: auditory–motor interactions in musical training. Annals of the New York Academy of Sciences, 1060, 189–194.PubMedCrossRef Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: auditory–motor interactions in musical training. Annals of the New York Academy of Sciences, 1060, 189–194.PubMedCrossRef
go back to reference Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308–314.PubMedCrossRef Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308–314.PubMedCrossRef
go back to reference Landau, S. M., & D’Esposito, M. (2006). Sequence learning in pianists and nonpianists: An fMRI study of motor expertise. Cognitive, Affective, & Behavioral Neuroscience, 6(3), 246–259.CrossRef Landau, S. M., & D’Esposito, M. (2006). Sequence learning in pianists and nonpianists: An fMRI study of motor expertise. Cognitive, Affective, & Behavioral Neuroscience, 6(3), 246–259.CrossRef
go back to reference Maestre, E. (2011). Synthesis of bowing controls applied to violin sound generation. Journal of the Acoustical Society of America, 130(4), 2431.CrossRef Maestre, E. (2011). Synthesis of bowing controls applied to violin sound generation. Journal of the Acoustical Society of America, 130(4), 2431.CrossRef
go back to reference Mandell, J., Schulze, K., & Schlaug, G. (2007). Congenital amusia: An auditory–motor feedback disorder? Restorative Neurology and Neuroscience, 25(3–4), 323–334.PubMed Mandell, J., Schulze, K., & Schlaug, G. (2007). Congenital amusia: An auditory–motor feedback disorder? Restorative Neurology and Neuroscience, 25(3–4), 323–334.PubMed
go back to reference Masters, R. S., Lo, C. Y., Maxwell, J. P., & Patil, N. G. (2008). Implicit motor learning in surgery: Implications for multi-tasking. Surgery, 143(1), 140–145.PubMedCrossRef Masters, R. S., Lo, C. Y., Maxwell, J. P., & Patil, N. G. (2008). Implicit motor learning in surgery: Implications for multi-tasking. Surgery, 143(1), 140–145.PubMedCrossRef
go back to reference Meister, I. G., Krings, T., Foltys, H., Boroojerdi, B., Muller, M., Topper, R., et al. (2004). Playing piano in the mind—An fMRI study on music imagery and performance in pianists. Brain Research Cognitive Brain Research, 19(3), 219–228.PubMedCrossRef Meister, I. G., Krings, T., Foltys, H., Boroojerdi, B., Muller, M., Topper, R., et al. (2004). Playing piano in the mind—An fMRI study on music imagery and performance in pianists. Brain Research Cognitive Brain Research, 19(3), 219–228.PubMedCrossRef
go back to reference Meyer, R. K., & Palmer, C. (2003). Temporal and motor transfer in music performance. Music Perception, 21(1), 81–104.CrossRef Meyer, R. K., & Palmer, C. (2003). Temporal and motor transfer in music performance. Music Perception, 21(1), 81–104.CrossRef
go back to reference Mottonen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. Journal of Neuroscience, 29(31), 9819–9825.PubMedCrossRef Mottonen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. Journal of Neuroscience, 29(31), 9819–9825.PubMedCrossRef
go back to reference Muller, R. A., Kleinhans, N., Pierce, K., Kemmotsu, N., & Courchesne, E. (2002). Functional MRI of motor sequence acquisition: Effects of learning stage and performance. Brain Research Cognitive Brain Research, 14(2), 277–293.PubMedCrossRef Muller, R. A., Kleinhans, N., Pierce, K., Kemmotsu, N., & Courchesne, E. (2002). Functional MRI of motor sequence acquisition: Effects of learning stage and performance. Brain Research Cognitive Brain Research, 14(2), 277–293.PubMedCrossRef
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.PubMedCrossRef Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.PubMedCrossRef
go back to reference Palmer, C., & Meyer, R. K. (2000). Conceptual and motor learning in music performance. Psychological Science, 11(1), 63–68.PubMedCrossRef Palmer, C., & Meyer, R. K. (2000). Conceptual and motor learning in music performance. Psychological Science, 11(1), 63–68.PubMedCrossRef
go back to reference Parlitz, D., Peschel, T., & Altenmuller, E. (1998). Assessment of dynamic finger forces in pianists: Effects of training and expertise. Journal of Biomechanics, 31(11), 1063–1067.PubMedCrossRef Parlitz, D., Peschel, T., & Altenmuller, E. (1998). Assessment of dynamic finger forces in pianists: Effects of training and expertise. Journal of Biomechanics, 31(11), 1063–1067.PubMedCrossRef
go back to reference Patuzzo, S., Fiaschi, A., & Manganotti, P. (2003). Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia, 41(9), 1272–1278.PubMedCrossRef Patuzzo, S., Fiaschi, A., & Manganotti, P. (2003). Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia, 41(9), 1272–1278.PubMedCrossRef
go back to reference Pfordresher, P. Q., Keller, P. E., Koch, I., Palmer, C., & Yildirim, E. (2011). Activation of learned action sequences by auditory feedback. Psychonomic Bulletin & Review, 18(3), 544–549.CrossRef Pfordresher, P. Q., Keller, P. E., Koch, I., Palmer, C., & Yildirim, E. (2011). Activation of learned action sequences by auditory feedback. Psychonomic Bulletin & Review, 18(3), 544–549.CrossRef
go back to reference Pfordresher, P. Q., & Palmer, C. (2006). Effects of hearing the past, present, or future during music performance. Perception and Psychophysics, 68(3), 362–376.PubMedCrossRef Pfordresher, P. Q., & Palmer, C. (2006). Effects of hearing the past, present, or future during music performance. Perception and Psychophysics, 68(3), 362–376.PubMedCrossRef
go back to reference Pizzamiglio, L., Aprile, T., Spitoni, G., Pitzalis, S., Bates, E., D’Amico, S., et al. (2005). Separate neural systems for processing action- or non-action-related sounds. Neuroimage, 24(3), 852–861.PubMedCrossRef Pizzamiglio, L., Aprile, T., Spitoni, G., Pitzalis, S., Bates, E., D’Amico, S., et al. (2005). Separate neural systems for processing action- or non-action-related sounds. Neuroimage, 24(3), 852–861.PubMedCrossRef
go back to reference Placidi, G. (2007). A smart virtual glove for the hand telerehabilitation. Computers in Biology and Medicine, 37(8), 1100–1107.PubMedCrossRef Placidi, G. (2007). A smart virtual glove for the hand telerehabilitation. Computers in Biology and Medicine, 37(8), 1100–1107.PubMedCrossRef
go back to reference Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305–310.PubMedCrossRef Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305–310.PubMedCrossRef
go back to reference Prinz, W. (1984). Modes of linkage between perception and action. In W. Prinz & A. F. Sanders (Eds.), Cognition and motor processes (pp. 185–193). Berlin: Springer. Prinz, W. (1984). Modes of linkage between perception and action. In W. Prinz & A. F. Sanders (Eds.), Cognition and motor processes (pp. 185–193). Berlin: Springer.
go back to reference Pulvermuller, F., Huss, M., Kherif, F., del Prado, Moscoso, Martin, F., Hauk, O., et al. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7865–7870.PubMedCrossRef Pulvermuller, F., Huss, M., Kherif, F., del Prado, Moscoso, Martin, F., Hauk, O., et al. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7865–7870.PubMedCrossRef
go back to reference Rogalsky, C., Rong, F., Saberi, K., & Hickok, G. (2011). Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging. Journal of Neuroscience, 31(10), 3843–3852.PubMedCrossRef Rogalsky, C., Rong, F., Saberi, K., & Hickok, G. (2011). Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging. Journal of Neuroscience, 31(10), 3843–3852.PubMedCrossRef
go back to reference Roy, A. C., Craighero, L., Fabbri-Destro, M., & Fadiga, L. (2008). Phonological and lexical motor facilitation during speech listening: a transcranial magnetic stimulation study. Journal of Physiology Paris, 102(1–3), 101–105.CrossRef Roy, A. C., Craighero, L., Fabbri-Destro, M., & Fadiga, L. (2008). Phonological and lexical motor facilitation during speech listening: a transcranial magnetic stimulation study. Journal of Physiology Paris, 102(1–3), 101–105.CrossRef
go back to reference Schmuckler, M. A. (1999). Testing models of melodic contour similarity. Music Perception, 16(3), 295–326.CrossRef Schmuckler, M. A. (1999). Testing models of melodic contour similarity. Music Perception, 16(3), 295–326.CrossRef
go back to reference Schmuckler, M. A. (2010). Melodic contour similarity using folk melodies. Music Perception, 28(2), 169–193.CrossRef Schmuckler, M. A. (2010). Melodic contour similarity using folk melodies. Music Perception, 28(2), 169–193.CrossRef
go back to reference Schutz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349–355.PubMedCrossRef Schutz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349–355.PubMedCrossRef
go back to reference Shahin, A. J. (2011). Neurophysiological influence of musical training on speech perception. Front Psychol, 2, 126. Shahin, A. J. (2011). Neurophysiological influence of musical training on speech perception. Front Psychol, 2, 126.
go back to reference Song, S., Howard, J. H, Jr, & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189(2), 145–158.CrossRef Song, S., Howard, J. H, Jr, & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189(2), 145–158.CrossRef
go back to reference Trimarchi, P. D., & Luzzatti, C. (2011). Implicit chord processing and motor representation in pianists. Psychological Research, 75(2), 122–128. Trimarchi, P. D., & Luzzatti, C. (2011). Implicit chord processing and motor representation in pianists. Psychological Research, 75(2), 122–128.
go back to reference Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41(8), 989–994.PubMedCrossRef Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41(8), 989–994.PubMedCrossRef
go back to reference Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702.PubMedCrossRef Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702.PubMedCrossRef
go back to reference Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.PubMed Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.PubMed
go back to reference Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.PubMedCrossRef Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.PubMedCrossRef
go back to reference Zatorre, R. J., & Halpern, A. R. (2005). Mental concerts: Musical imagery and auditory cortex. Neuron, 47(1), 9–12.PubMedCrossRef Zatorre, R. J., & Halpern, A. R. (2005). Mental concerts: Musical imagery and auditory cortex. Neuron, 47(1), 9–12.PubMedCrossRef
go back to reference Zetou, E., Tzetzis, G., Vernadakis, N., & Kioumourtzoglou, E. (2002). Modeling in learning two volleyball skills. Perceptual and Motor Skills, 94(3 Pt 2), 1131–1142.PubMed Zetou, E., Tzetzis, G., Vernadakis, N., & Kioumourtzoglou, E. (2002). Modeling in learning two volleyball skills. Perceptual and Motor Skills, 94(3 Pt 2), 1131–1142.PubMed
go back to reference Zmigrod, S., & Hommel, B. (2009). Auditory event files: Integrating auditory perception and action planning. Attention Perception Psychophysics, 71(2), 352–362.CrossRef Zmigrod, S., & Hommel, B. (2009). Auditory event files: Integrating auditory perception and action planning. Attention Perception Psychophysics, 71(2), 352–362.CrossRef
Metagegevens
Titel
Improved motor sequence retention by motionless listening
Auteurs
Amir Lahav
Tal Katz
Roxanne Chess
Elliot Saltzman
Publicatiedatum
01-05-2013
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 3/2013
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0433-0

Andere artikelen Uitgave 3/2013

Psychological Research 3/2013 Naar de uitgave