Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Psychological Research 3/2022

28-05-2021 | Original Article

Implementation of the diffusion model on dot-probe task performance in children with behavioral inhibition

Auteurs: Shane Wise, Cynthia Huang-Pollock, Koraly Pérez-Edgar

Gepubliceerd in: Psychological Research | Uitgave 3/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Attentional bias to threat, the process of preferentially attending to potentially threatening environmental stimuli over neutral stimuli, is positively associated with behavioral inhibition (BI) and trait anxiety. However, the most used measure of attentional bias to threat, the dot-probe task, has been criticized for demonstrating poor reliability. The present study aimed to assess whether utilizing a sequential sampling model to describe performance could detect adequate test–retest reliability for the dot-probe task, demonstrate stronger cueing effects, and improve the association with neural signals of early attention. One hundred and twenty children aged 9–12 years completed the dot-probe task twice. During the second administration, event-related potentials (ERPs) were obtained as time-sensitive neural markers of attention. BI was not associated with traditional or diffusion model measures of performance. Traditional and diffusion model measures of performance were also not associated with N1, P2, or N2 ERP amplitude. There were main effects of Visit, in which RTs were faster and standard deviation of RT smaller during the second administration due to an increase in drift rate and a decrease in non-decision time. The traditional RT bias score (r = 0.06) and bias scores formed via diffusion model parameters (all r’s < 0.40) all demonstrated poor reliability. Results confirm recommendations to move away from using the dot-probe task as the primary or sole index of attentional bias.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
The information used to judge the orientation of the target is also influenced by learned factors that are independent of the perceptual qualities of the target itself (e.g. including learning to suppress distractors, see Sewell et al. (2018)). This latter process, however, is less likely to be observed in a task like the dot-probe, where explicit distractors are not present.
 
2
Results did not change when a cutoff of < 300 ms was applied to better approximate cutoffs used for diffusion modeling.
 
3
Because the CDF plots suggested the presence of some misfits, 1000 datasets were subsequently simulated. Participants who exhibited a lower model fit (defined as < 10% quantile of the distribution of p values) for any of the four conditions were removed from analysis. This resulted in a reduced N = 57 (22 BI, 34 Controls). CDF plots generated from the remaining participants demonstrated improved model fit, but primary results did not change. See Supplementary Table 2 and Supplementary Fig. 1.
 
4
A Cue (3: Neutral, Threat Congruent, Threat Incongruent) Visit (2) BI (2) GLM replicated these effects. However, this GLM identified an additional Visit (2) Cue (3) interaction on Ter (F(2, 236) = 5.17, p = 0.006, η2 = 0.042) in which the Neutral cue trials did not differ between visit 1 and 2 as much as the task condition cue trials did.
 
Literatuur
go back to reference Bar-Haim, Y., Lamy, D., & Glickman, S. (2005). Attentional bias in anxiety: A behavioral and ERP study. Brain and Cognition, 59(1), 11–22. CrossRefPubMed Bar-Haim, Y., Lamy, D., & Glickman, S. (2005). Attentional bias in anxiety: A behavioral and ERP study. Brain and Cognition, 59(1), 11–22. CrossRefPubMed
go back to reference Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychological Bulletin, 133(1), 1. CrossRefPubMed Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychological Bulletin, 133(1), 1. CrossRefPubMed
go back to reference Blackford, J. U., & Pine, D. S. (2012). Neural substrates of childhood anxiety disorders: a review of neuroimaging findings. Child and Adolescent Psychiatric Clinics, 21(3), 501–525. CrossRef Blackford, J. U., & Pine, D. S. (2012). Neural substrates of childhood anxiety disorders: a review of neuroimaging findings. Child and Adolescent Psychiatric Clinics, 21(3), 501–525. CrossRef
go back to reference Carretié, L., Mercado, F., Tapia, M., & Hinojosa, J. A. (2001). Emotion, attention, and the ‘negativity bias’, studied through event-related potentials. International Journal of Psychophysiology, 41(1), 75–85. CrossRefPubMed Carretié, L., Mercado, F., Tapia, M., & Hinojosa, J. A. (2001). Emotion, attention, and the ‘negativity bias’, studied through event-related potentials. International Journal of Psychophysiology, 41(1), 75–85. CrossRefPubMed
go back to reference Chun, M. M., & Jiang, Y. H. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. CrossRefPubMed Chun, M. M., & Jiang, Y. H. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. CrossRefPubMed
go back to reference Chun, M. M., & Jiang, Y. H. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360–365. CrossRef Chun, M. M., & Jiang, Y. H. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360–365. CrossRef
go back to reference Coll, C. G., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55, 1005–1019. CrossRef Coll, C. G., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55, 1005–1019. CrossRef
go back to reference Ehrenreich, J. T., & Gross, A. M. (2002). Biased attentional behavior in childhood anxiety: A review of theory and current empirical investigation. Clinical Psychology Review, 22(7), 991–1008. CrossRefPubMed Ehrenreich, J. T., & Gross, A. M. (2002). Biased attentional behavior in childhood anxiety: A review of theory and current empirical investigation. Clinical Psychology Review, 22(7), 991–1008. CrossRefPubMed
go back to reference Eldar, S., Yankelevitch, R., Lamy, D., & Bar-Haim, Y. (2010). Enhanced neural reactivity and selective attention to threat in anxiety. Biological Psychology, 85(2), 252–257. CrossRefPubMed Eldar, S., Yankelevitch, R., Lamy, D., & Bar-Haim, Y. (2010). Enhanced neural reactivity and selective attention to threat in anxiety. Biological Psychology, 85(2), 252–257. CrossRefPubMed
go back to reference Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Large-scale analysis of test–retest reliabilities of self-regulation measures. Proceedings of the National Academy of Sciences, 116(12), 5472–5477. CrossRef Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Large-scale analysis of test–retest reliabilities of self-regulation measures. Proceedings of the National Academy of Sciences, 116(12), 5472–5477. CrossRef
go back to reference Fu, X., & Pérez-Edgar, K. (2019). Threat-related attention bias in socioemotional development: A critical review and methodological considerations. Developmental Review, 51, 31–57. CrossRefPubMed Fu, X., & Pérez-Edgar, K. (2019). Threat-related attention bias in socioemotional development: A critical review and methodological considerations. Developmental Review, 51, 31–57. CrossRefPubMed
go back to reference Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. CrossRefPubMed Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. CrossRefPubMed
go back to reference Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186. CrossRefPubMed Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186. CrossRefPubMed
go back to reference Kanske, P., & Kotz, S. A. (2007). Concreteness in emotional words: ERP evidence from a hemifield study. Brain Research, 1148, 138–148. CrossRefPubMed Kanske, P., & Kotz, S. A. (2007). Concreteness in emotional words: ERP evidence from a hemifield study. Brain Research, 1148, 138–148. CrossRefPubMed
go back to reference Kanske, P., Plitschka, J., & Kotz, S. A. (2011). Attentional orienting towards emotion: P2 and N400 ERP effects. Neuropsychologia, 49(11), 3121–3129. CrossRefPubMed Kanske, P., Plitschka, J., & Kotz, S. A. (2011). Attentional orienting towards emotion: P2 and N400 ERP effects. Neuropsychologia, 49(11), 3121–3129. CrossRefPubMed
go back to reference Kappenman, E. S., Farrens, J. L., Luck, S. J., & Proudfit, G. H. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: Poor reliability and lack of correlation with anxiety. Frontiers in Psychology, 5, 1368. CrossRefPubMedPubMedCentral Kappenman, E. S., Farrens, J. L., Luck, S. J., & Proudfit, G. H. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: Poor reliability and lack of correlation with anxiety. Frontiers in Psychology, 5, 1368. CrossRefPubMedPubMedCentral
go back to reference Lamm, C., Walker, O. L., Degnan, K. A., Henderson, H. A., Pine, D. S., McDermott, J. M., & Fox, N. A. (2014). Cognitive control moderates early childhood temperament in predicting social behavior in 7-year-old children: an ERP study. Developmental Science, 17(5), 667–681. CrossRefPubMedPubMedCentral Lamm, C., Walker, O. L., Degnan, K. A., Henderson, H. A., Pine, D. S., McDermott, J. M., & Fox, N. A. (2014). Cognitive control moderates early childhood temperament in predicting social behavior in 7-year-old children: an ERP study. Developmental Science, 17(5), 667–681. CrossRefPubMedPubMedCentral
go back to reference Leite, F. P., & Ratcliff, R. (2011). What cognitive processes drive response biases? A diffusion model analysis. Judgment and Decision Making, 6(7), 651–687. Leite, F. P., & Ratcliff, R. (2011). What cognitive processes drive response biases? A diffusion model analysis. Judgment and Decision Making, 6(7), 651–687.
go back to reference Lerche, V., & Voss, A. (2017). Retest reliability of the parameters of the Ratcliff diffusion model. Psychological Research Psychologische Forschung, 81(3), 629–652. CrossRefPubMed Lerche, V., & Voss, A. (2017). Retest reliability of the parameters of the Ratcliff diffusion model. Psychological Research Psychologische Forschung, 81(3), 629–652. CrossRefPubMed
go back to reference Molloy, A., & Anderson, P. L. (2020). Evaluating the reliability of attention bias and attention bias variability measures in the dot-probe task among people with social anxiety disorder. Psychological Assessment, 32(9), 883. CrossRefPubMed Molloy, A., & Anderson, P. L. (2020). Evaluating the reliability of attention bias and attention bias variability measures in the dot-probe task among people with social anxiety disorder. Psychological Assessment, 32(9), 883. CrossRefPubMed
go back to reference Morales, S., Taber-Thomas, B. C., & Pérez-Edgar, K. E. (2017). Patterns of attention to threat across tasks in behaviorally inhibited children at risk for anxiety. Developmental Science, 20(2), e12391. CrossRef Morales, S., Taber-Thomas, B. C., & Pérez-Edgar, K. E. (2017). Patterns of attention to threat across tasks in behaviorally inhibited children at risk for anxiety. Developmental Science, 20(2), e12391. CrossRef
go back to reference Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: A diffusion model analysis of prior probability and potential payoff. Journal of Neuroscience, 32(7), 2335–2343. CrossRefPubMed Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: A diffusion model analysis of prior probability and potential payoff. Journal of Neuroscience, 32(7), 2335–2343. CrossRefPubMed
go back to reference Pérez-Edgar, K., Reeb-Sutherland, B. C., McDermott, J. M., White, L. K., Henderson, H. A., Degnan, K. A., et al. (2011). Attention biases to threat link behavioral inhibition to social withdrawal over time in very young children. Journal of Abnormal Child Psychology, 39(6), 885–895. CrossRefPubMedPubMedCentral Pérez-Edgar, K., Reeb-Sutherland, B. C., McDermott, J. M., White, L. K., Henderson, H. A., Degnan, K. A., et al. (2011). Attention biases to threat link behavioral inhibition to social withdrawal over time in very young children. Journal of Abnormal Child Psychology, 39(6), 885–895. CrossRefPubMedPubMedCentral
go back to reference Price, R. B., Rosen, D., Siegle, G. J., Ladouceur, C. D., Tang, K., Allen, K. B., et al. (2016). From anxious youth to depressed adolescents: Prospective prediction of 2-year depression symptoms via attentional bias measures. Journal of Abnormal Psychology, 125(2), 267. CrossRefPubMed Price, R. B., Rosen, D., Siegle, G. J., Ladouceur, C. D., Tang, K., Allen, K. B., et al. (2016). From anxious youth to depressed adolescents: Prospective prediction of 2-year depression symptoms via attentional bias measures. Journal of Abnormal Psychology, 125(2), 267. CrossRefPubMed
go back to reference Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational modeling applied to the dot-probe task yields improved reliability and mechanistic insights. Biological Psychiatry, 85(7), 606–612. CrossRefPubMed Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational modeling applied to the dot-probe task yields improved reliability and mechanistic insights. Biological Psychiatry, 85(7), 606–612. CrossRefPubMed
go back to reference Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin and Review, 9(3), 438–481. CrossRefPubMed Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin and Review, 9(3), 438–481. CrossRefPubMed
go back to reference Rodebaugh, T. L., Scullin, R. B., Langer, J. K., Dixon, D. J., Huppert, J. D., Bernstein, A., et al. (2016). Unreliability as a threat to understanding psychopathology: The cautionary tale of attentional bias. Journal of Abnormal Psychology, 125(6), 840. CrossRefPubMedPubMedCentral Rodebaugh, T. L., Scullin, R. B., Langer, J. K., Dixon, D. J., Huppert, J. D., Bernstein, A., et al. (2016). Unreliability as a threat to understanding psychopathology: The cautionary tale of attentional bias. Journal of Abnormal Psychology, 125(6), 840. CrossRefPubMedPubMedCentral
go back to reference Ross, D. A., Richler, J. J., & Gauthier, I. (2015). Reliability of composite-task measurements of holistic face processing. Behavior Research Methods, 47(3), 736–743. CrossRefPubMedPubMedCentral Ross, D. A., Richler, J. J., & Gauthier, I. (2015). Reliability of composite-task measurements of holistic face processing. Behavior Research Methods, 47(3), 736–743. CrossRefPubMedPubMedCentral
go back to reference Taylor, M. J. (2002). Non-spatial attentional effects on P1. Clinical Neurophysiology, 113(12), 1903–1908. CrossRefPubMed Taylor, M. J. (2002). Non-spatial attentional effects on P1. Clinical Neurophysiology, 113(12), 1903–1908. CrossRefPubMed
go back to reference Thai, N., Taber-Thomas, B. C., & Pérez-Edgar, K. E. (2016). Neural correlates of attention biases, behavioral inhibition, and social anxiety in children: An ERP study. Developmental Cognitive Neuroscience, 19, 200–210. CrossRefPubMedPubMedCentral Thai, N., Taber-Thomas, B. C., & Pérez-Edgar, K. E. (2016). Neural correlates of attention biases, behavioral inhibition, and social anxiety in children: An ERP study. Developmental Cognitive Neuroscience, 19, 200–210. CrossRefPubMedPubMedCentral
go back to reference Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60(6), 385. CrossRefPubMed Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60(6), 385. CrossRefPubMed
go back to reference Waechter, S., Nelson, A. L., Wright, C., Hyatt, A., & Oakman, J. (2014). Measuring attentional bias to threat: Reliability of dot probe and eye movement indices. Cognitive Therapy and Research, 38(3), 313–333. CrossRef Waechter, S., Nelson, A. L., Wright, C., Hyatt, A., & Oakman, J. (2014). Measuring attentional bias to threat: Reliability of dot probe and eye movement indices. Cognitive Therapy and Research, 38(3), 313–333. CrossRef
go back to reference White, C. N., & Poldrack, R. A. (2014). Decomposing bias in different types of simple decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 385. PubMed White, C. N., & Poldrack, R. A. (2014). Decomposing bias in different types of simple decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 385. PubMed
go back to reference White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). Anxiety enhances threat processing without competition among multiple inputs: A diffusion model analysis. Emotion, 10(5), 662. CrossRefPubMed White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). Anxiety enhances threat processing without competition among multiple inputs: A diffusion model analysis. Emotion, 10(5), 662. CrossRefPubMed
go back to reference White, C. N., Skokin, K., Carlos, B., & Weaver, A. (2016). Using decision models to decompose anxiety-related bias in threat classification. Emotion, 16(2), 196. CrossRefPubMed White, C. N., Skokin, K., Carlos, B., & Weaver, A. (2016). Using decision models to decompose anxiety-related bias in threat classification. Emotion, 16(2), 196. CrossRefPubMed
Metagegevens
Titel
Implementation of the diffusion model on dot-probe task performance in children with behavioral inhibition
Auteurs
Shane Wise
Cynthia Huang-Pollock
Koraly Pérez-Edgar
Publicatiedatum
28-05-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-021-01532-3