Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2020

25-02-2019 | Original Article

Humans derive task expectancies from sub-second and supra-second interval durations

Auteurs: Stefanie Aufschnaiter, Andrea Kiesel, Roland Thomaschke

Gepubliceerd in: Psychological Research | Uitgave 5/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Recent studies in the field of task switching have shown that humans can base expectancies for tasks on temporal cues. When tasks are predictable based on the duration of the preceding pre-target interval, humans implicitly adapt to this predictability, indicated by better performance in trials with validly compared to invalidly predicted tasks. Yet, it is not clear which internal timing mechanisms are involved. Previous research has suggested that intervals from the sub- and supra-second range are processed by distinct cognitive timing systems. As earlier studies on temporally predictable task switching have used predictive intervals stemming from both ranges, it was not yet clear if the time-based expectancy effect was driven by just one of the two internal timing systems. The present study used clearly sub-second intervals (10 ms and 500 ms) in Experiment 1, while clearly supra-second intervals (1500 ms and 3000 ms) were used in Experiment 2. Substantial adaptation effects were observed in both experiments, showing that sub- as well as supra-second timing systems are involved in time-based expectancies for tasks. The present findings offer important implications for our theoretical understanding of the internal timing mechanisms involved in time-based task expectancy.
Voetnoten
1
Concerning time-based expectancy in the context of ordered task sequences, it should be noted that a recent study (Mittelstädt, Kiesel, Fischer, Rieger and Thomaschke, in revision) investigated time-based expectancy in a dual-task paradigm. The authors found that the backward-compatibility effect between tasks was reduced when incompatible dual-task trials were predicted by one of two possible FPs with a high degree of probability.
 
Literatuur
go back to reference Altmann, E. M. (2005). Repetition priming in task switching: Do the benefits dissipate? Psychonomic Bulletin & Review, 12, 535–540.CrossRef Altmann, E. M. (2005). Repetition priming in task switching: Do the benefits dissipate? Psychonomic Bulletin & Review, 12, 535–540.CrossRef
go back to reference Aufschnaiter, S., Kiesel, A., Dreisbach, G., Wenke, D., & Thomaschke, R. (2018a). Time-based expectancy in temporally structured task switching. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 856–870. Aufschnaiter, S., Kiesel, A., Dreisbach, G., Wenke, D., & Thomaschke, R. (2018a). Time-based expectancy in temporally structured task switching. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 856–870.
go back to reference Aufschnaiter, S., Kiesel, A., & Thomaschke, R. (2018b). Transfer of time-based task expectancy across different timing environments. Psychological Research, 82(1), 230–243.PubMedCrossRef Aufschnaiter, S., Kiesel, A., & Thomaschke, R. (2018b). Transfer of time-based task expectancy across different timing environments. Psychological Research, 82(1), 230–243.PubMedCrossRef
go back to reference Buonomano, D. V. (2007). The biology of time across different scales. Nature Chemical Biology, 3(10), 594–597.PubMedCrossRef Buonomano, D. V. (2007). The biology of time across different scales. Nature Chemical Biology, 3(10), 594–597.PubMedCrossRef
go back to reference Buonomano, D. V. (2014). The neural mechanisms of timing on short timescales. In V. Arstila, & D. Lloyd (Ed.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 329–342). Cambridge: MIT. Buonomano, D. V. (2014). The neural mechanisms of timing on short timescales. In V. Arstila, & D. Lloyd (Ed.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 329–342). Cambridge: MIT.
go back to reference Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: A Monte Carlo investigation. Psychological Bulletin, 113(3), 566–579.PubMedCrossRef Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: A Monte Carlo investigation. Psychological Bulletin, 113(3), 566–579.PubMedCrossRef
go back to reference Creelman, C. D. (1962). Human discrimination of auditory duration. The Journal of the Acoustical Society of America, 34(5), 582–593.CrossRef Creelman, C. D. (1962). Human discrimination of auditory duration. The Journal of the Acoustical Society of America, 34(5), 582–593.CrossRef
go back to reference De Jong, R. (2000). An intention-activation account of residual switch costs. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 357–376). Cambridge: MIT. De Jong, R. (2000). An intention-activation account of residual switch costs. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 357–376). Cambridge: MIT.
go back to reference Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.CrossRef Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.CrossRef
go back to reference Dreisbach, G., Haider, H., & Kluwe, R. H. (2002). Preparatory processes in the Task-Switching paradigm: Evidence from the use of probability cues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 468–483.PubMed Dreisbach, G., Haider, H., & Kluwe, R. H. (2002). Preparatory processes in the Task-Switching paradigm: Evidence from the use of probability cues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 468–483.PubMed
go back to reference Gooch, C. M., Wiener, M., Hamilton, A. C., & Coslett, H. (2011). Temporal discrimination of sub-and suprasecond time intervals: A voxel-based lesion mapping analysis. Frontiers in Integrative Neuroscience, 5, 59.PubMedPubMedCentralCrossRef Gooch, C. M., Wiener, M., Hamilton, A. C., & Coslett, H. (2011). Temporal discrimination of sub-and suprasecond time intervals: A voxel-based lesion mapping analysis. Frontiers in Integrative Neuroscience, 5, 59.PubMedPubMedCentralCrossRef
go back to reference Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.CrossRef Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.CrossRef
go back to reference Hayashi, M. J., Kantele, M., Walsh, V., Carlson, S., & Kanai, R. (2014). Dissociable neuroanatomical correlates of subsecond and suprasecond time perception. Journal of Cognitive Neuroscience, 26(8), 1685–1693.PubMedCrossRef Hayashi, M. J., Kantele, M., Walsh, V., Carlson, S., & Kanai, R. (2014). Dissociable neuroanatomical correlates of subsecond and suprasecond time perception. Journal of Cognitive Neuroscience, 26(8), 1685–1693.PubMedCrossRef
go back to reference Hohle, R. H. (1965). Inferred components of reaction times as functions of foreperiod duration. Journal of Experimental Psychology, 69(4), 382–386.PubMedCrossRef Hohle, R. H. (1965). Inferred components of reaction times as functions of foreperiod duration. Journal of Experimental Psychology, 69(4), 382–386.PubMedCrossRef
go back to reference Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874.PubMedCrossRef Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874.PubMedCrossRef
go back to reference Klemmer, E. T. (1956). Time uncertainty in simple reaction time. Journal of Experimental Psychology, 51(3), 179–184.PubMedCrossRef Klemmer, E. T. (1956). Time uncertainty in simple reaction time. Journal of Experimental Psychology, 51(3), 179–184.PubMedCrossRef
go back to reference Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1474–1486.PubMed Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1474–1486.PubMed
go back to reference Koch, I. (2003). The role of external cues for endogenous advance reconfiguration in task switching. Psychonomic Bulletin & Review, 10, 488–492.CrossRef Koch, I. (2003). The role of external cues for endogenous advance reconfiguration in task switching. Psychonomic Bulletin & Review, 10, 488–492.CrossRef
go back to reference Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review, 12, 107–112.CrossRef Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review, 12, 107–112.CrossRef
go back to reference Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking—An integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557–583.PubMedCrossRef Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking—An integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557–583.PubMedCrossRef
go back to reference Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian data analysis for cognitive science: A practical course. New York: Cambridge University Press.CrossRef Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian data analysis for cognitive science: A practical course. New York: Cambridge University Press.CrossRef
go back to reference Lewis, P. A., & Miall, R. C. (2003a). Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia, 41(12), 1583–1592.PubMedCrossRef Lewis, P. A., & Miall, R. C. (2003a). Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia, 41(12), 1583–1592.PubMedCrossRef
go back to reference Lewis, P. A., & Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250–255.PubMedCrossRef Lewis, P. A., & Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250–255.PubMedCrossRef
go back to reference Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71(2–3), 226–234.PubMedCrossRef Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71(2–3), 226–234.PubMedCrossRef
go back to reference Los, S. A., & Agter, F. (2005). Reweighting sequential effects across different distributions of foreperiods: Segregating elementary contributions to nonspecific preparation. Perception and Psychophysics, 67(7), 1161–1170.PubMedCrossRef Los, S. A., & Agter, F. (2005). Reweighting sequential effects across different distributions of foreperiods: Segregating elementary contributions to nonspecific preparation. Perception and Psychophysics, 67(7), 1161–1170.PubMedCrossRef
go back to reference Los, S. A., & Horoufchin, H. (2011). Dissociative patterns of foreperiod effects in temporal discrimination and reaction time tasks. Quarterly Journal of Experimental Psychology, 64(5), 1009–1020.CrossRef Los, S. A., & Horoufchin, H. (2011). Dissociative patterns of foreperiod effects in temporal discrimination and reaction time tasks. Quarterly Journal of Experimental Psychology, 64(5), 1009–1020.CrossRef
go back to reference Los, S. A., Knol, D. L., & Boers, R. M. (2001). The foreperiod effect revisited: Conditioning as a basis for nonspecific preparation. Acta Psychologica, 106, 121–145.PubMedCrossRef Los, S. A., Knol, D. L., & Boers, R. M. (2001). The foreperiod effect revisited: Conditioning as a basis for nonspecific preparation. Acta Psychologica, 106, 121–145.PubMedCrossRef
go back to reference Los, S. A., & Schut, M. L. (2008). The effective time course of preparation. Cognitive Psychology, 57(1), 20–55.PubMedCrossRef Los, S. A., & Schut, M. L. (2008). The effective time course of preparation. Cognitive Psychology, 57(1), 20–55.PubMedCrossRef
go back to reference Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104, 241–265.PubMedCrossRef Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104, 241–265.PubMedCrossRef
go back to reference Merchant, H., & de Lafuente, V. (2014). Introduction to the neurobiology of interval timing. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.CrossRef Merchant, H., & de Lafuente, V. (2014). Introduction to the neurobiology of interval timing. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.CrossRef
go back to reference Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336.PubMedCrossRef Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336.PubMedCrossRef
go back to reference Mittelstädt, V., Kiesel, A., Fischer, R., Rieger, T., & Thomaschke, R. (in revision). Temporal predictability of between-task interference in dual-tasking. Foreperiods as contextual cues modulate the backward compatibility effect. Mittelstädt, V., Kiesel, A., Fischer, R., Rieger, T., & Thomaschke, R. (in revision). Temporal predictability of between-task interference in dual-tasking. Foreperiods as contextual cues modulate the backward compatibility effect.
go back to reference Näätänen, R., Muranen, V., & Merisalo, A. (1974). Timing of expectancy peak in simple reaction time situation. Acta Psychologica, 38(6), 461–470.PubMedCrossRef Näätänen, R., Muranen, V., & Merisalo, A. (1974). Timing of expectancy peak in simple reaction time situation. Acta Psychologica, 38(6), 461–470.PubMedCrossRef
go back to reference Nieuwenhuis, S., & Monsell, S. (2002). Residual costs in task switching: Testing the failure-to-engage hypothesis. Psychonomic Bulletin & Review, 9, 86–92.CrossRef Nieuwenhuis, S., & Monsell, S. (2002). Residual costs in task switching: Testing the failure-to-engage hypothesis. Psychonomic Bulletin & Review, 9, 86–92.CrossRef
go back to reference Rammsayer, T. (2008). Neuropharmalogical approaches to human timing. In S. Grondin (Ed.), Psychology of time (pp. 295–320). Bingley: Emerald. Rammsayer, T. (2008). Neuropharmalogical approaches to human timing. In S. Grondin (Ed.), Psychology of time (pp. 295–320). Bingley: Emerald.
go back to reference Rammsayer, T. (2009). Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. NeuroQuantology, 7(1), 103–113.CrossRef Rammsayer, T. (2009). Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. NeuroQuantology, 7(1), 103–113.CrossRef
go back to reference Rammsayer, T., & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8(2), 270–277.CrossRef Rammsayer, T., & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8(2), 270–277.CrossRef
go back to reference Rammsayer, T., & Ulrich, R. (2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychologica, 120(2), 141–171.PubMedCrossRef Rammsayer, T., & Ulrich, R. (2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychologica, 120(2), 141–171.PubMedCrossRef
go back to reference Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50(6), 565–574.CrossRef Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50(6), 565–574.CrossRef
go back to reference Rammsayer, T. H., & Troche, S. J. (2014). Elucidating the internal structure of psychophysical timing performance in the sub-second and second range by utilizing confirmatory factor analysis. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.CrossRef Rammsayer, T. H., & Troche, S. J. (2014). Elucidating the internal structure of psychophysical timing performance in the sub-second and second range by utilizing confirmatory factor analysis. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.CrossRef
go back to reference Rieth, C. A., & Huber, D. E. (2013). Implicit learning of spatiotemporal contingencies in spatial cueing. Journal of experimental psychology: Human Perception and Performance, 39(4), 1165–1180.PubMed Rieth, C. A., & Huber, D. E. (2013). Implicit learning of spatiotemporal contingencies in spatial cueing. Journal of experimental psychology: Human Perception and Performance, 39(4), 1165–1180.PubMed
go back to reference Roberts, F., & Francis, A. L. (2013). Identifying a temporal threshold of tolerance for silent gaps after requests. The Journal of the Acoustical Society of America, 133(6), 471–477.CrossRef Roberts, F., & Francis, A. L. (2013). Identifying a temporal threshold of tolerance for silent gaps after requests. The Journal of the Acoustical Society of America, 133(6), 471–477.CrossRef
go back to reference Roberts, F., Margutti, P., & Takano, S. (2011). Judgments concerning the valence of inter-turn silence across speakers of American English, Italian, and Japanese. Discourse Processes, 48(5), 331–354.CrossRef Roberts, F., Margutti, P., & Takano, S. (2011). Judgments concerning the valence of inter-turn silence across speakers of American English, Italian, and Japanese. Discourse Processes, 48(5), 331–354.CrossRef
go back to reference Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.CrossRef Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.CrossRef
go back to reference Schneider, D. W., & Logan, G. D. (2006). Hierarchical control of cognitive processes: Switching tasks in sequences. Journal of Experimental Psychology: General, 135(4), 623–640.CrossRef Schneider, D. W., & Logan, G. D. (2006). Hierarchical control of cognitive processes: Switching tasks in sequences. Journal of Experimental Psychology: General, 135(4), 623–640.CrossRef
go back to reference Schröter, H., Birngruber, T., Bratzke, D., Miller, J., & Ulrich, R. (2015). Task predictability influences the variable foreperiod effect: Evidence of task-specific temporal preparation. Psychological Research, 79(2), 230–237.PubMedCrossRef Schröter, H., Birngruber, T., Bratzke, D., Miller, J., & Ulrich, R. (2015). Task predictability influences the variable foreperiod effect: Evidence of task-specific temporal preparation. Psychological Research, 79(2), 230–237.PubMedCrossRef
go back to reference Smith, J. B. (1974). Effects of response rate, reinforcement frequency, and the duration of a stimulus preceding response-independent food. Journal of the Experimental Analysis of Behavior, 21(2), 215–221.PubMedPubMedCentralCrossRef Smith, J. B. (1974). Effects of response rate, reinforcement frequency, and the duration of a stimulus preceding response-independent food. Journal of the Experimental Analysis of Behavior, 21(2), 215–221.PubMedPubMedCentralCrossRef
go back to reference Steinborn, M. B., & Langner, R. (2011). Distraction by irrelevant sound during foreperiods selectively impairs temporal preparation. Acta Psychologica, 136(3), 405–418.PubMedCrossRef Steinborn, M. B., & Langner, R. (2011). Distraction by irrelevant sound during foreperiods selectively impairs temporal preparation. Acta Psychologica, 136(3), 405–418.PubMedCrossRef
go back to reference Steinborn, M. B., & Langner, R. (2012). Arousal modulates temporal preparation under increased time uncertainty: Evidence from higher-order sequential foreperiod effects. Acta Psychologica, 139(1), 65–76.PubMedCrossRef Steinborn, M. B., & Langner, R. (2012). Arousal modulates temporal preparation under increased time uncertainty: Evidence from higher-order sequential foreperiod effects. Acta Psychologica, 139(1), 65–76.PubMedCrossRef
go back to reference Steinborn, M. B., Langner, R., & Huestegge, L. (2017). Mobilizing cognition for speeded action: Try-harder instructions promote motivated readiness in the constant-foreperiod paradigm. Psychological research, 81(6), 1135–1151.PubMedCrossRef Steinborn, M. B., Langner, R., & Huestegge, L. (2017). Mobilizing cognition for speeded action: Try-harder instructions promote motivated readiness in the constant-foreperiod paradigm. Psychological research, 81(6), 1135–1151.PubMedCrossRef
go back to reference Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2008). Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation. Acta Psychologica, 129(2), 297–307.PubMedCrossRef Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2008). Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation. Acta Psychologica, 129(2), 297–307.PubMedCrossRef
go back to reference Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2009). Dynamic adjustment of temporal preparation: Shifting warning signal modality attenuates the sequential foreperiod effect. Acta Psychologica, 132(1), 40–47.PubMedCrossRef Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2009). Dynamic adjustment of temporal preparation: Shifting warning signal modality attenuates the sequential foreperiod effect. Acta Psychologica, 132(1), 40–47.PubMedCrossRef
go back to reference Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2010). The effect of a cross-trial shift of auditory warning signals on the sequential foreperiod effect. Acta Psychologica, 134(1), 94–104.PubMedCrossRef Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2010). The effect of a cross-trial shift of auditory warning signals on the sequential foreperiod effect. Acta Psychologica, 134(1), 94–104.PubMedCrossRef
go back to reference Thomaschke, R., & Dreisbach, G. (2013). Temporal predictability facilitates action, not perception. Psychological Science, 24(7), 1335–1340.PubMedCrossRef Thomaschke, R., & Dreisbach, G. (2013). Temporal predictability facilitates action, not perception. Psychological Science, 24(7), 1335–1340.PubMedCrossRef
go back to reference Thomaschke, R., & Dreisbach, G. (2015). The time-event correlation effect is due to temporal expectancy, not to partial transition costs. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 196–218.PubMed Thomaschke, R., & Dreisbach, G. (2015). The time-event correlation effect is due to temporal expectancy, not to partial transition costs. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 196–218.PubMed
go back to reference Thomaschke, R., Hoffmann, J., Haering, C., & Kiesel, A. (2016). Time-based expectancy for task relevant stimulus features. Timing & Time Perception, 4, 248–270.CrossRef Thomaschke, R., Hoffmann, J., Haering, C., & Kiesel, A. (2016). Time-based expectancy for task relevant stimulus features. Timing & Time Perception, 4, 248–270.CrossRef
go back to reference Thomaschke, R., Kiesel, A., & Hoffmann, J. (2011). Response specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 2309–2322.CrossRef Thomaschke, R., Kiesel, A., & Hoffmann, J. (2011). Response specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 2309–2322.CrossRef
go back to reference Thomaschke, R., Kunchulia, M., & Dreisbach, G. (2015). Time-based event expectations employ relative, not absolute, representations of time. Psychonomic Bulletin & Review, 22, 890–895.CrossRef Thomaschke, R., Kunchulia, M., & Dreisbach, G. (2015). Time-based event expectations employ relative, not absolute, representations of time. Psychonomic Bulletin & Review, 22, 890–895.CrossRef
go back to reference Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011a). The scope and precision of specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 953–964.CrossRef Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011a). The scope and precision of specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 953–964.CrossRef
go back to reference Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011b). The specificity of temporal expectancy: Evidence from a variable foreperiod paradigm. The Quarterly Journal of Experimental Psychology, 64, 2289–2300.PubMedCrossRef Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011b). The specificity of temporal expectancy: Evidence from a variable foreperiod paradigm. The Quarterly Journal of Experimental Psychology, 64, 2289–2300.PubMedCrossRef
go back to reference Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychological Monographs: General and Applied, 77(13), 1–31.CrossRef Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychological Monographs: General and Applied, 77(13), 1–31.CrossRef
go back to reference Volberg, G., & Thomaschke, R. (2017). Time-based expectations entail preparatory motor activity. Cortex, 92, 261–270.PubMedCrossRef Volberg, G., & Thomaschke, R. (2017). Time-based expectations entail preparatory motor activity. Cortex, 92, 261–270.PubMedCrossRef
go back to reference Wagener, A., & Hoffmann, J. (2010). Temporal cueing of target-identity and target-location. Experimental Psychology, 57(6), 436–445.PubMedCrossRef Wagener, A., & Hoffmann, J. (2010). Temporal cueing of target-identity and target-location. Experimental Psychology, 57(6), 436–445.PubMedCrossRef
go back to reference Wendt, M., & Kiesel, A. (2011). Conflict adaptation in time: Foreperiods as contextual cues for attentional adjustment. Psychonomic Bulletin & Review, 18(5), 910–916.CrossRef Wendt, M., & Kiesel, A. (2011). Conflict adaptation in time: Foreperiods as contextual cues for attentional adjustment. Psychonomic Bulletin & Review, 18(5), 910–916.CrossRef
go back to reference Wiener, M., Lohoff, F. W., & Coslett, H. B. (2011). Double dissociation of dopamine genes and timing in humans. Journal of Cognitive Neuroscience, 23(10), 2811–2821.PubMedCrossRef Wiener, M., Lohoff, F. W., & Coslett, H. B. (2011). Double dissociation of dopamine genes and timing in humans. Journal of Cognitive Neuroscience, 23(10), 2811–2821.PubMedCrossRef
go back to reference Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. Neuroimage, 49(2), 1728–1740.PubMedCrossRef Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. Neuroimage, 49(2), 1728–1740.PubMedCrossRef
go back to reference Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525. Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525.
Metagegevens
Titel
Humans derive task expectancies from sub-second and supra-second interval durations
Auteurs
Stefanie Aufschnaiter
Andrea Kiesel
Roland Thomaschke
Publicatiedatum
25-02-2019
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-019-01155-9

Andere artikelen Uitgave 5/2020

Psychological Research 5/2020 Naar de uitgave