Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2006

01-11-2006 | Original Article

How the brain blinks: towards a neurocognitive model of the attentional blink

Auteurs: Bernhard Hommel, Klaus Kessler, Frank Schmitz, Joachim Gross, Elkan Akyürek, Kimron Shapiro, Alfons Schnitzler

Gepubliceerd in: Psychological Research | Uitgave 6/2006

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset—the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from “biased competition”, with the top–down bias being generated by parietal–frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Voetnoten
1
To be more precise, phase synchronization was observed in the beta-band at a frequency of about 15 Hz. Beta synchronization is known to play an important role in attentional processes in general (Liang et al. 2002; Wrobel 2000) and in coupling temporal and parietal areas during object processing in particular (Von Stein et al. 1999). Also, simulation studies show that the beta frequency has characteristics that are favorable for long-range interactions, in contrast to the gamma frequency band that is optimal for local processing (Bibbig et al. 2002; Kopell et al. 2000). However, note that the frequency of 15 Hz is close to the first harmonic of the stimulus presentation frequency in the study of Gross et al. (2004) (6.85 Hz), which may suggest that synchronization frequencies are not specific to the operation mode of the communicating network but to the temporal characteristics of the events the communication refers to. In any case, the findings of Gross et al. (2004) do not support the claims of Dehaene et al. (2003) and Fell et al. (2002) that gamma-band oscillations play a crucial role in the AB.
 
2
The SI quantifies the phase coupling between different regions. It is computed as the absolute value of the sum of the complex phase differences of both regions divided by the number of epochs and is bounded between 0 (indicating no phase locking) and 1 (indicating perfect phase locking). For further details, see Gross et al. (2004).
 
3
The functional reason for why the system is restricted to, or at least better off focusing communication on one topic at a time may be that this solves one of the many binding problems (Treisman 1996) that distributed systems face. Technically speaking, it may well be possible that different subgroups of codes lead concurrent “private discussions” (to stay with the communication metaphor) but that would make it very hard for a global operation to tell relevant discussions (the outcome of which needs to be considered) from useless babble. This is why members of parliaments commonly agree on sequentially organized contributions.
 
Literatuur
go back to reference Adcock RA, Constable RT, Gore JC, Goldman-Rakic PS (2000). Functional neuroanatomy of executive processes involved in dual-task performance, Proc Natl Acad Sci USA 97:3567–3572 Adcock RA, Constable RT, Gore JC, Goldman-Rakic PS (2000). Functional neuroanatomy of executive processes involved in dual-task performance, Proc Natl Acad Sci USA 97:3567–3572
go back to reference Arnell KM, Helion AM, Hurdelbrink JA, Pasieka B (2004). Dissociating sources of dual-task interference using human electrophysiology. Psychon Bull Rev 11:77–83PubMed Arnell KM, Helion AM, Hurdelbrink JA, Pasieka B (2004). Dissociating sources of dual-task interference using human electrophysiology. Psychon Bull Rev 11:77–83PubMed
go back to reference Behrmann M, Geng JJ, Shomstein S (2004). Parietal cortex and attention. Curr Opin Neurobiol 2:212–217CrossRef Behrmann M, Geng JJ, Shomstein S (2004). Parietal cortex and attention. Curr Opin Neurobiol 2:212–217CrossRef
go back to reference Bibbig A, Traub RD, Whittington MA (2002). Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model. J Neurophysiol 88:1634–1654PubMed Bibbig A, Traub RD, Whittington MA (2002). Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model. J Neurophysiol 88:1634–1654PubMed
go back to reference Brehaut J, Enns JT, Di Lollo V (1999). Visual masking plays two roles in the attentional blink. Percept Psychophys, 61:1436–1448PubMed Brehaut J, Enns JT, Di Lollo V (1999). Visual masking plays two roles in the attentional blink. Percept Psychophys, 61:1436–1448PubMed
go back to reference Broadbent DE, Broadbent MH (1987). From detection to identification: response to multiple targets in rapid serial visual presentation. Percept Psychophys 42:105–113PubMed Broadbent DE, Broadbent MH (1987). From detection to identification: response to multiple targets in rapid serial visual presentation. Percept Psychophys 42:105–113PubMed
go back to reference Chun MM, Potter MC (1995). A two-stage model for multiple target detection in rapid serial visual presentation. J Exp Psychol Hum Percept Perform 21:109–127CrossRefPubMed Chun MM, Potter MC (1995). A two-stage model for multiple target detection in rapid serial visual presentation. J Exp Psychol Hum Percept Perform 21:109–127CrossRefPubMed
go back to reference Corbetta M, Kincade MJ, Ollinger J, McAvoy MP, Shulman GL (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297CrossRefPubMed Corbetta M, Kincade MJ, Ollinger J, McAvoy MP, Shulman GL (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297CrossRefPubMed
go back to reference Dehaene S, Naccache L, Cohen L, LeBihan D, Mangin JF, Poline J-B, Rivière D (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nat Neurosci 4:752–758CrossRefPubMed Dehaene S, Naccache L, Cohen L, LeBihan D, Mangin JF, Poline J-B, Rivière D (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nat Neurosci 4:752–758CrossRefPubMed
go back to reference Dehaene S, Sergent C, Changeux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100:8520–8525CrossRefPubMed Dehaene S, Sergent C, Changeux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100:8520–8525CrossRefPubMed
go back to reference Dell’Acqua R, Jolicœur P, Pesciarelli F, Job R, Palomba D (2003) Electrophysiological evidence of visual encoding deficits in a crossmodal attentional blink paradigm. Psychophysiology 40:629–639CrossRefPubMed Dell’Acqua R, Jolicœur P, Pesciarelli F, Job R, Palomba D (2003) Electrophysiological evidence of visual encoding deficits in a crossmodal attentional blink paradigm. Psychophysiology 40:629–639CrossRefPubMed
go back to reference Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222CrossRefPubMed Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222CrossRefPubMed
go back to reference D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281CrossRefPubMed D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281CrossRefPubMed
go back to reference Di Lollo V, Kawahara J-I, Ghorashi S M, Enns JT (2005). The attentional blink: resource depletion or temporary loss of control? Psychological Research, in press Di Lollo V, Kawahara J-I, Ghorashi S M, Enns JT (2005). The attentional blink: resource depletion or temporary loss of control? Psychological Research, in press
go back to reference Donchin E. (1981). Surprise! ... Surprise? Psychophysiology 18:493–513PubMed Donchin E. (1981). Surprise! ... Surprise? Psychophysiology 18:493–513PubMed
go back to reference Downar J, Crawley AP, Mikulis DJ, Davis KD (2001) The effect of task-relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14:1256–1267CrossRefPubMed Downar J, Crawley AP, Mikulis DJ, Davis KD (2001) The effect of task-relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14:1256–1267CrossRefPubMed
go back to reference Duncan J (1996) Cooperating brain systems in selective perception and action. In: Inui T, McClelland JL (eds), Attention and performance XVI. MIT, Cambridge, pp 549–578 Duncan J (1996) Cooperating brain systems in selective perception and action. In: Inui T, McClelland JL (eds), Attention and performance XVI. MIT, Cambridge, pp 549–578
go back to reference Duncan J, Ward R, Shapiro KL (1994) Direct measurement of attentional dwell time in human vision. Nature 369:313–315CrossRefPubMed Duncan J, Ward R, Shapiro KL (1994) Direct measurement of attentional dwell time in human vision. Nature 369:313–315CrossRefPubMed
go back to reference Feinstein JS, Stein MB, Castillo GN, Paulus MP (2005) From sensory to conscious perception. Conscious and Cogn, in press Feinstein JS, Stein MB, Castillo GN, Paulus MP (2005) From sensory to conscious perception. Conscious and Cogn, in press
go back to reference Fell J, Klaver P, Elger CE, Fernandez G (2002) Suppression of EEG Gamma activity may cause the attentional blink. Conscious Cogn 11:114–122CrossRefPubMed Fell J, Klaver P, Elger CE, Fernandez G (2002) Suppression of EEG Gamma activity may cause the attentional blink. Conscious Cogn 11:114–122CrossRefPubMed
go back to reference Friedman-Hill SR, Robertson LC, Ungerleider LG, Desimone R (2003) Posterior parietal cortex and the filtering of distractors. Proc Natl Acad Sci 100:4263–4268CrossRefPubMed Friedman-Hill SR, Robertson LC, Ungerleider LG, Desimone R (2003) Posterior parietal cortex and the filtering of distractors. Proc Natl Acad Sci 100:4263–4268CrossRefPubMed
go back to reference Giesbrecht B, Kingstone A (2004) Right hemisphere involvement in the attentional blink: evidence from a split-brain patient. Brain Cogn 55:303–306CrossRefPubMed Giesbrecht B, Kingstone A (2004) Right hemisphere involvement in the attentional blink: evidence from a split-brain patient. Brain Cogn 55:303–306CrossRefPubMed
go back to reference Goldberg ME, Bisley J, Powell KD, Gottlieb J, Kusunoki M (2002) The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Proc Natl Acad Sci USA 956:205–215 Goldberg ME, Bisley J, Powell KD, Gottlieb J, Kusunoki M (2002) The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Proc Natl Acad Sci USA 956:205–215
go back to reference Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Long-range neural synchrony predicts temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101:13050–13055CrossRefPubMed Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Long-range neural synchrony predicts temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101:13050–13055CrossRefPubMed
go back to reference Hommel B (2004) Event files: feature binding in and across perception and action. Trends Cogn Sci 8:494–500CrossRefPubMed Hommel B (2004) Event files: feature binding in and across perception and action. Trends Cogn Sci 8:494–500CrossRefPubMed
go back to reference Hommel B, Akyürek EG (2005) Lag-1 sparing in the attentional blink: benefits and costs of integrating two events into a single episode. Q J Exp Psychol (A), (in press) Hommel B, Akyürek EG (2005) Lag-1 sparing in the attentional blink: benefits and costs of integrating two events into a single episode. Q J Exp Psychol (A), (in press)
go back to reference Jolicœur P,& Dell’Acqua R (1998) The demonstration of short-term consolidation. Cogn Psychol 36:138–202CrossRefPubMed Jolicœur P,& Dell’Acqua R (1998) The demonstration of short-term consolidation. Cogn Psychol 36:138–202CrossRefPubMed
go back to reference Jolicœur P, Dell’Acqua R, Crebolder J (2000) Multitasking performance deficits: forging links between the attentional blink and the psychological refractory period. In: S Monsell, J Driver (eds) Control of cognitive processes: attention and performance MIT, Cambridge, pp 309–330 Jolicœur P, Dell’Acqua R, Crebolder J (2000) Multitasking performance deficits: forging links between the attentional blink and the psychological refractory period. In: S Monsell, J Driver (eds) Control of cognitive processes: attention and performance MIT, Cambridge, pp 309–330
go back to reference Jolicœur P, Tombu M, Oriet C, Stevanovski B (2002) From perception to action: making the connection. In: W Prinz, B Hommel (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford, pp 558–586 Jolicœur P, Tombu M, Oriet C, Stevanovski B (2002) From perception to action: making the connection. In: W Prinz, B Hommel (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford, pp 558–586
go back to reference Kessler K, Schmitz F, Gross J, Hommel B, Shapiro K, Schnitzler A (2005a) Target consolidation under high temporal processing demands as revealed by MEG. Neuroimage, in press Kessler K, Schmitz F, Gross J, Hommel B, Shapiro K, Schnitzler A (2005a) Target consolidation under high temporal processing demands as revealed by MEG. Neuroimage, in press
go back to reference Kessler K, Schmitz F, Gross J, Hommel B, Shapiro K, Schnitzler A (2005b) Cortical mechanisms of attention in time: neural correlates of the Lag-1 sparing phenomenon. Eur J Neurosci, in press Kessler K, Schmitz F, Gross J, Hommel B, Shapiro K, Schnitzler A (2005b) Cortical mechanisms of attention in time: neural correlates of the Lag-1 sparing phenomenon. Eur J Neurosci, in press
go back to reference Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97:1867–1872CrossRefPubMed Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97:1867–1872CrossRefPubMed
go back to reference Kranczioch C, Debener S, Engel AE (2003) Event-related potential correlates of the attentional blink phenomenon. Cogn Brain Res 17:177–187CrossRef Kranczioch C, Debener S, Engel AE (2003) Event-related potential correlates of the attentional blink phenomenon. Cogn Brain Res 17:177–187CrossRef
go back to reference Kristofferson AB (1967) Successiveness discrimination as a two-state, quantal process. Science 158:1337–1339PubMedCrossRef Kristofferson AB (1967) Successiveness discrimination as a two-state, quantal process. Science 158:1337–1339PubMedCrossRef
go back to reference Liang H, Bressler SL, Ding M, Truccolo WA, Nakamura R (2002) Synchronized activity in prefrontal cortex during anticipation of visuomotor processing. Neuroreport 13:2011–2015CrossRefPubMed Liang H, Bressler SL, Ding M, Truccolo WA, Nakamura R (2002) Synchronized activity in prefrontal cortex during anticipation of visuomotor processing. Neuroreport 13:2011–2015CrossRefPubMed
go back to reference Luck S, Vogel E, Shapiro K (1996) Word meanings can be accessed but not reported during the attentional blink. Nature 383:616–618CrossRefPubMed Luck S, Vogel E, Shapiro K (1996) Word meanings can be accessed but not reported during the attentional blink. Nature 383:616–618CrossRefPubMed
go back to reference Lupiáñez J, Milliken B (1999) Exogenous cuing effects and the attentional set for integrating vs. differentiating information. J Gen Psychol 126:392–418PubMedCrossRef Lupiáñez J, Milliken B (1999) Exogenous cuing effects and the attentional set for integrating vs. differentiating information. J Gen Psychol 126:392–418PubMedCrossRef
go back to reference Lupiáñez J, Milliken B, Solano C, Weaver B, Tipper SP (2001) On the strategic modulation of the time course of facilitation and inhibition of return. Q J Exp Psychol 54A:753–773CrossRef Lupiáñez J, Milliken B, Solano C, Weaver B, Tipper SP (2001) On the strategic modulation of the time course of facilitation and inhibition of return. Q J Exp Psychol 54A:753–773CrossRef
go back to reference Marcantoni WS, Lepage M, Beaudoin G, Bourgouin P, Richer F (2003) Neural correlates of dual task interference in rapid visual streams: an fMRI study. Brain Cogn 53:318–321CrossRefPubMed Marcantoni WS, Lepage M, Beaudoin G, Bourgouin P, Richer F (2003) Neural correlates of dual task interference in rapid visual streams: an fMRI study. Brain Cogn 53:318–321CrossRefPubMed
go back to reference Marois R, Yi D-J, Chun MM (2004). The neural fate of consciously perceived and missed events in the attentional blink. Neuron 41:465–472CrossRefPubMed Marois R, Yi D-J, Chun MM (2004). The neural fate of consciously perceived and missed events in the attentional blink. Neuron 41:465–472CrossRefPubMed
go back to reference McArthur G, Budd T, Michie P (1999) The attentional blink and P300. Neuroreport 10:3691–3695PubMed McArthur G, Budd T, Michie P (1999) The attentional blink and P300. Neuroreport 10:3691–3695PubMed
go back to reference Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 8:3029–3037PubMed Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 8:3029–3037PubMed
go back to reference Milner B (1968) Visual recognition and recall after right temporal-lobe excision in man. Neuropsychologia 6:191–209CrossRef Milner B (1968) Visual recognition and recall after right temporal-lobe excision in man. Neuropsychologia 6:191–209CrossRef
go back to reference Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1:56–61CrossRef Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1:56–61CrossRef
go back to reference Potter MC, Chun MM, Banks BS, Muckenhoupt M (1998) Two attentional deficits in serial target search: the visual attentional blink and an amodal task-switch deficit. J Exp Psychol Learn Mem Cogn 25:979–992 Potter MC, Chun MM, Banks BS, Muckenhoupt M (1998) Two attentional deficits in serial target search: the visual attentional blink and an amodal task-switch deficit. J Exp Psychol Learn Mem Cogn 25:979–992
go back to reference Potter MC, Staub A, O’Connor DH (2002) The time course of competition for attention: attention is initially labile. J Exp Psychol Hum Percept Perform 28:1149–1162CrossRefPubMed Potter MC, Staub A, O’Connor DH (2002) The time course of competition for attention: attention is initially labile. J Exp Psychol Hum Percept Perform 28:1149–1162CrossRefPubMed
go back to reference Raymond JE (2003) New objects, not new features, trigger the attentional blink. Psychol Sci 14:54–59CrossRefPubMed Raymond JE (2003) New objects, not new features, trigger the attentional blink. Psychol Sci 14:54–59CrossRefPubMed
go back to reference Raymond JE, Shapiro KL, Arnell KM (1992) Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psychol Hum Percept Perform 18:849–860CrossRefPubMed Raymond JE, Shapiro KL, Arnell KM (1992) Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psychol Hum Percept Perform 18:849–860CrossRefPubMed
go back to reference Richer F, Lepage M (1996) Frontal lesions increase post-target interference in rapid stimulus streams. Neuropsychologia 34:509–514CrossRefPubMed Richer F, Lepage M (1996) Frontal lesions increase post-target interference in rapid stimulus streams. Neuropsychologia 34:509–514CrossRefPubMed
go back to reference Richer F, Bédard S, Lepage M, Chouinard MJ (1998) Frontal lesions produce a dual task deficit in simple rapid choices. Brain Cogn 37:173–175 Richer F, Bédard S, Lepage M, Chouinard MJ (1998) Frontal lesions produce a dual task deficit in simple rapid choices. Brain Cogn 37:173–175
go back to reference Rolke B, Heil M, Streb J, Henninghausen E (2001) Missed prime words within the attentional blink evoke an N400 semantic priming effect. Psychophysiology 38:165–174CrossRefPubMed Rolke B, Heil M, Streb J, Henninghausen E (2001) Missed prime words within the attentional blink evoke an N400 semantic priming effect. Psychophysiology 38:165–174CrossRefPubMed
go back to reference Shapiro KL (2001) Temporal methods for studying attention: how did we get there and where are we going? In: K Shapiro (ed.) The limits of attention: temporal constraints in human information processing. Oxford University Press, Oxford, pp 1–19 Shapiro KL (2001) Temporal methods for studying attention: how did we get there and where are we going? In: K Shapiro (ed.) The limits of attention: temporal constraints in human information processing. Oxford University Press, Oxford, pp 1–19
go back to reference Shapiro KL, Raymond JE, Arnell KM (1994) Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. J Exp Psychol Hum Percept Perform 20:357–371CrossRefPubMed Shapiro KL, Raymond JE, Arnell KM (1994) Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. J Exp Psychol Hum Percept Perform 20:357–371CrossRefPubMed
go back to reference Shapiro K, Hillstrom AP, Husain M (2002) Control of visuotemporal attention by inferior parietal and superior temporal cortex. Curr Biol 12:1320–1325CrossRefPubMed Shapiro K, Hillstrom AP, Husain M (2002) Control of visuotemporal attention by inferior parietal and superior temporal cortex. Curr Biol 12:1320–1325CrossRefPubMed
go back to reference Sheppard D, Duncan J, Shapiro K, Hillstrom AP (2002) Objects and events in the attentional blink. Psychol Sci 13:410–415CrossRefPubMed Sheppard D, Duncan J, Shapiro K, Hillstrom AP (2002) Objects and events in the attentional blink. Psychol Sci 13:410–415CrossRefPubMed
go back to reference Szameitat AJ, Schubert T, Müller K, Von Cramon DY (2002) Localization of executive functions in dual-task performance with fMRI. J Cogn Neurosci 14:1184–1199CrossRefPubMed Szameitat AJ, Schubert T, Müller K, Von Cramon DY (2002) Localization of executive functions in dual-task performance with fMRI. J Cogn Neurosci 14:1184–1199CrossRefPubMed
go back to reference Turvey MT (1973) On peripheral and central processes in vision: inferences from an information-processing analysis of masking with patterned stimuli. Psychol Rev 80:1–52PubMedCrossRef Turvey MT (1973) On peripheral and central processes in vision: inferences from an information-processing analysis of masking with patterned stimuli. Psychol Rev 80:1–52PubMedCrossRef
go back to reference Visser TAW, Bischof WF, Di Lollo (1999). Attentional switching in spatial and non-spatial domains: evidence from the attentional blink. Psychol Bull 125:458–469CrossRef Visser TAW, Bischof WF, Di Lollo (1999). Attentional switching in spatial and non-spatial domains: evidence from the attentional blink. Psychol Bull 125:458–469CrossRef
go back to reference Vogel EK, Luck SJ (2002) Delayed working memory consolidation during the attentional blink. Psychon Bull Rev 9:739–743PubMed Vogel EK, Luck SJ (2002) Delayed working memory consolidation during the attentional blink. Psychon Bull Rev 9:739–743PubMed
go back to reference Von Stein A, Rappelsberger P, Sarnthein J, Petsche H (1999) Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9:137–150CrossRefPubMed Von Stein A, Rappelsberger P, Sarnthein J, Petsche H (1999) Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9:137–150CrossRefPubMed
go back to reference Waszak F, Hommel B, Allport A (2005) Interaction of task readiness and automatic retrieval in task-switching: negative priming and competitor priming. Mem Cognit, in press Waszak F, Hommel B, Allport A (2005) Interaction of task readiness and automatic retrieval in task-switching: negative priming and competitor priming. Mem Cognit, in press
go back to reference Waszak F, Hommel B, Allport A (2003) Task-switching and long-term priming: role of episodic stimulus-task bindings in task-shift costs. Cogn Psychol 46:361–413CrossRefPubMed Waszak F, Hommel B, Allport A (2003) Task-switching and long-term priming: role of episodic stimulus-task bindings in task-shift costs. Cogn Psychol 46:361–413CrossRefPubMed
go back to reference Wojciulik E, Kanwisher N (1999) The generality of parietal involvement in visual attention. Neuron 23:747–764CrossRefPubMed Wojciulik E, Kanwisher N (1999) The generality of parietal involvement in visual attention. Neuron 23:747–764CrossRefPubMed
go back to reference Wrobel A (2000) Beta activity: a carrier for visual attention. Acta Neurobiol Exp 60:247–260 Wrobel A (2000) Beta activity: a carrier for visual attention. Acta Neurobiol Exp 60:247–260
Metagegevens
Titel
How the brain blinks: towards a neurocognitive model of the attentional blink
Auteurs
Bernhard Hommel
Klaus Kessler
Frank Schmitz
Joachim Gross
Elkan Akyürek
Kimron Shapiro
Alfons Schnitzler
Publicatiedatum
01-11-2006
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 6/2006
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-005-0009-3

Andere artikelen Uitgave 6/2006

Psychological Research 6/2006 Naar de uitgave