Skip to main content
Top
Gepubliceerd in:

19-11-2018 | Review

How depressed is “depressed”? A systematic review and diagnostic meta-analysis of optimal cut points for the Beck Depression Inventory revised (BDI-II)

Auteurs: Michael von Glischinski, Ruth von Brachel, Gerrit Hirschfeld

Gepubliceerd in: Quality of Life Research | Uitgave 5/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Introduction

The Beck Depression Inventory revised (BDI-II) is widely used tool to screen for depression. The aim of the present study was to systematically review and synthesize studies that determined optimal cut points for the BDI-II.

Method

We identified 27 studies that tried to identify optimal cut points for the BDI-II. Study quality was assessed using QUADAS criteria. Cut points and their variability were analyzed descriptively, via simulation and synthesized with a diagnostic meta-analysis. Analysis was performed on all studies and subgroups based on the setting (psychiatric, somatic, healthy).

Results

Cut points identified as optimal ranged from 10 to 25 across all studies. Simulation-based estimations of the variability inherent in studies show that much of the between-study differences may be attributed to random fluctuations. Diagnostic meta-analysis across all studies revealed that a cut point of 14.5 (95% CI 12.75–16.44) is optimal, yielding a sensitivity of 0.86 and a specificity of 0.78. Analyses within the different settings suggest using sample-specific cut points, specifically 18.18 in psychiatric settings, and 12.9 in primary care settings and healthy populations.

Conclusion

Most studies aimed at determining optimal cut points fail to acknowledge that reported results are only estimates and subject to random fluctuations resulting in conflicting recommendations for practitioners. Taking into account these fluctuations, we find that practitioners should use different cut points to screen for depression in primary care and healthy populations (a score of 13 and higher indicates depression) and psychiatric settings (a score of 19 and higher indicates depression). Methods to describe this variability and meta-analysis to synthesize findings across studies should be used more widely.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
3.
go back to reference Beard, C., Millner, A. J., Forgeard, M. J., Fried, E. I., Hsu, K. J., Treadway, M. T., … Björgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 3359–3369.CrossRefPubMedPubMedCentral Beard, C., Millner, A. J., Forgeard, M. J., Fried, E. I., Hsu, K. J., Treadway, M. T., … Björgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 3359–3369.CrossRefPubMedPubMedCentral
4.
go back to reference Beck, A. T., Steer, R. A., & Brown, G. K. (1996). BDI-II: Beck Depression Inventory manual (2nd ed.). San Antonio: Psychological Corporation. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). BDI-II: Beck Depression Inventory manual (2nd ed.). San Antonio: Psychological Corporation.
5.
go back to reference Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L. … STARD Group. (2015). STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ, 351, h5527.CrossRefPubMedPubMedCentral Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L. … STARD Group. (2015). STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ, 351, h5527.CrossRefPubMedPubMedCentral
7.
go back to reference Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J., … Whiteford, H. A. (2013). Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Medicine, 10(11), e1001547.CrossRefPubMedPubMedCentral Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J., … Whiteford, H. A. (2013). Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Medicine, 10(11), e1001547.CrossRefPubMedPubMedCentral
8.
go back to reference Fried, E. I., & Nesse, R. M. (2015). Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13(1), 1.CrossRef Fried, E. I., & Nesse, R. M. (2015). Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13(1), 1.CrossRef
9.
go back to reference Hasin, D. S., Sarvet, A. L., Meyers, J. L., Saha, T. D., Ruan, W. J., Stohl, M., & Grant, B. F. (2018). Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry, 75(4), 336–346.CrossRefPubMedPubMedCentral Hasin, D. S., Sarvet, A. L., Meyers, J. L., Saha, T. D., Ruan, W. J., Stohl, M., & Grant, B. F. (2018). Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry, 75(4), 336–346.CrossRefPubMedPubMedCentral
10.
go back to reference Hirschfeld, G., & do Brasil, P. E. A. A. (2014). A simulation study into the performance of “optimal” diagnostic thresholds in the population: “Large” effect sizes are not enough. Journal of Clinical Epidemiology, 67(4), 449–453.CrossRefPubMed Hirschfeld, G., & do Brasil, P. E. A. A. (2014). A simulation study into the performance of “optimal” diagnostic thresholds in the population: “Large” effect sizes are not enough. Journal of Clinical Epidemiology, 67(4), 449–453.CrossRefPubMed
11.
go back to reference Kamenov, K., Caballero, F. F., Miret, M., Leonardi, M., Sainio, P., Tobiasz-Adamczyk, B., … Cabello, M. (2016). Which are the most burdensome functioning areas in depression? A cross-national study. Frontiers in Psychology, 7, 1342.CrossRefPubMedPubMedCentral Kamenov, K., Caballero, F. F., Miret, M., Leonardi, M., Sainio, P., Tobiasz-Adamczyk, B., … Cabello, M. (2016). Which are the most burdensome functioning areas in depression? A cross-national study. Frontiers in Psychology, 7, 1342.CrossRefPubMedPubMedCentral
12.
go back to reference Leeflang, M. M. G., Moons, K. G. M., Reitsma, J. B., & Zwinderman, A. H. (2008). Bias in sensitivity and specificity caused by data-driven selection of optimal cutoff values: Mechanisms, magnitude, and solutions. Clinical Chemistry, 54(4), 729–737.CrossRefPubMed Leeflang, M. M. G., Moons, K. G. M., Reitsma, J. B., & Zwinderman, A. H. (2008). Bias in sensitivity and specificity caused by data-driven selection of optimal cutoff values: Mechanisms, magnitude, and solutions. Clinical Chemistry, 54(4), 729–737.CrossRefPubMed
13.
go back to reference Lemmens, L., Arntz, A., Peeters, F., Hollon, S. D., Roefs, A., & Huibers, M. J. H. (2015). Clinical effectiveness of cognitive therapy v. interpersonal psychotherapy for depression: Results of a randomized controlled trial. Psychological Medicine, 45(10), 2095–2110.CrossRefPubMed Lemmens, L., Arntz, A., Peeters, F., Hollon, S. D., Roefs, A., & Huibers, M. J. H. (2015). Clinical effectiveness of cognitive therapy v. interpersonal psychotherapy for depression: Results of a randomized controlled trial. Psychological Medicine, 45(10), 2095–2110.CrossRefPubMed
15.
go back to reference McDowell, I. (2006). Measuring health: A guide to rating scales and questionnaires (3rd ed.). New York: Oxford University.CrossRef McDowell, I. (2006). Measuring health: A guide to rating scales and questionnaires (3rd ed.). New York: Oxford University.CrossRef
16.
go back to reference Mitchell, A. J., Vaze, A., & Rao, S. (2009). Clinical diagnosis of depression in primary care: A meta-analysis. The Lancet, 374(9690), 609–619.CrossRef Mitchell, A. J., Vaze, A., & Rao, S. (2009). Clinical diagnosis of depression in primary care: A meta-analysis. The Lancet, 374(9690), 609–619.CrossRef
21.
25.
go back to reference Subica, A. M., Fowler, J. C., Elhai, J. D., Frueh, B. C., Sharp, C., Kelly, E. L., & Allen, J. G. (2014). Factor structure and diagnostic validity of the Beck Depression Inventory–II with adult clinical inpatients: Comparison to a gold-standard diagnostic interview. Psychological Assessment, 26(4), 1106.CrossRefPubMed Subica, A. M., Fowler, J. C., Elhai, J. D., Frueh, B. C., Sharp, C., Kelly, E. L., & Allen, J. G. (2014). Factor structure and diagnostic validity of the Beck Depression Inventory–II with adult clinical inpatients: Comparison to a gold-standard diagnostic interview. Psychological Assessment, 26(4), 1106.CrossRefPubMed
26.
go back to reference Wang, D., Tian, L., & Zhao, Y. (2017). Smoothed empirical likelihood for the Youden index. Computational Statistics & Data Analysis, 115, 1–10.CrossRef Wang, D., Tian, L., & Zhao, Y. (2017). Smoothed empirical likelihood for the Youden index. Computational Statistics & Data Analysis, 115, 1–10.CrossRef
Metagegevens
Titel
How depressed is “depressed”? A systematic review and diagnostic meta-analysis of optimal cut points for the Beck Depression Inventory revised (BDI-II)
Auteurs
Michael von Glischinski
Ruth von Brachel
Gerrit Hirschfeld
Publicatiedatum
19-11-2018
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 5/2019
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-018-2050-x