Skip to main content
Top

2024 | OriginalPaper | Hoofdstuk

6. Het instellen van de beademingsmachine

Auteur : Hans ter Haar

Gepubliceerd in: Mechanische beademing op de intensive care

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Het instellen van de beademingsmachine moet in overeenstemming zijn met de doelen van mechanische beademing: adequate gaswisseling, veiligheid, comfort en een zo kort mogelijke beademingsduur. Of het nu een routine postoperatieve beademing betreft of een complexe beademing, deze doelen moeten altijd verwerkt zijn in de instelling. De operator zal op de hoogte moeten zijn van de eigenschappen van de beademingsmachine en de gebruikte beademingsvormen, maar ook van de specifieke pathofysiologie en state of the art behandelmethoden. Deze behandelmethoden betreffen niet alleen het instellen van de beademingsmachine, maar ook andere behandelstrategieën die het bereiken van de doelen van mechanische beademing mogelijk maken. Het instellen van de beademingsmachine begint altijd met de keuze voor een beademingsvorm, waarna parameters voor ventilatie en oxygenatie volgen en ten slotte de finetuning.
Literatuur
1.
go back to reference Chatburn RL, Mireles-Cabodevila E. Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respir Care. 2011;56(1):85–98.PubMedCrossRef Chatburn RL, Mireles-Cabodevila E. Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respir Care. 2011;56(1):85–98.PubMedCrossRef
2.
go back to reference Syndrome NTARD. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Syndrome NTARD. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
3.
go back to reference Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit. 2008;14(2):22–6. Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit. 2008;14(2):22–6.
4.
5.
go back to reference Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef
6.
go back to reference Hedenstierna G. The hidden pulmonary dysfunction in acute lung injury. Intensive Care Med. 2006;32:1933–4.PubMedCrossRef Hedenstierna G. The hidden pulmonary dysfunction in acute lung injury. Intensive Care Med. 2006;32:1933–4.PubMedCrossRef
7.
go back to reference Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRefPubMed Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRefPubMed
8.
go back to reference Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.PubMedCrossRef Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.PubMedCrossRef
9.
go back to reference Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Statement of the Sixth International Consensus Conference on Intensive Care Medicine. Eur Respir J. 2007;29:1033–56. Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Statement of the Sixth International Consensus Conference on Intensive Care Medicine. Eur Respir J. 2007;29:1033–56.
10.
go back to reference Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Critical Care Med. 1987;15:462–6.CrossRef Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Critical Care Med. 1987;15:462–6.CrossRef
11.
go back to reference Roussos CS, Fukuchi Y, Macklem PT, Engel LA. Influence of diaphragmatic contraction on ventilation distribution in horizontal man. J Appl Physiol. 1976;40(3):417–24.PubMedCrossRef Roussos CS, Fukuchi Y, Macklem PT, Engel LA. Influence of diaphragmatic contraction on ventilation distribution in horizontal man. J Appl Physiol. 1976;40(3):417–24.PubMedCrossRef
12.
go back to reference Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef
13.
go back to reference Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation–perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.PubMedCrossRef Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation–perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.PubMedCrossRef
14.
go back to reference Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest. 2015;148(2):340–55.PubMedCrossRef Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest. 2015;148(2):340–55.PubMedCrossRef
15.
go back to reference Spieth PM, Carvalho AR, Pelosi P, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med. 2009;179:684–93.PubMedCrossRef Spieth PM, Carvalho AR, Pelosi P, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med. 2009;179:684–93.PubMedCrossRef
16.
go back to reference Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. JAMA. 2013;368(9):795–805. Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. JAMA. 2013;368(9):795–805.
17.
go back to reference MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med. 1997;25(10):1671–7.PubMedCrossRef MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med. 1997;25(10):1671–7.PubMedCrossRef
18.
go back to reference Kacmarek RM. Proportional assist ventilation and neurally adjusted ventilatory assist. Respir Care. 2011;56(2):140–8.PubMedCrossRef Kacmarek RM. Proportional assist ventilation and neurally adjusted ventilatory assist. Respir Care. 2011;56(2):140–8.PubMedCrossRef
19.
go back to reference Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65. Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.
20.
go back to reference Ijland MM, Heunks LM, Van der Hoeven JG. Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic.’ Crit Care. 2010;14:237.PubMedCrossRef Ijland MM, Heunks LM, Van der Hoeven JG. Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic.’ Crit Care. 2010;14:237.PubMedCrossRef
21.
go back to reference Maeda Y, Fuyino Y, Uchiyama A, et al. Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief? Crit Care. 2003;7(5):R92–7.PubMedPubMedCentralCrossRef Maeda Y, Fuyino Y, Uchiyama A, et al. Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief? Crit Care. 2003;7(5):R92–7.PubMedPubMedCentralCrossRef
22.
go back to reference Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.PubMedCrossRef Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.PubMedCrossRef
23.
go back to reference Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef
24.
go back to reference Chen L, Del Sorbo L, Grieco DL, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(2):178–87.PubMedCrossRef Chen L, Del Sorbo L, Grieco DL, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(2):178–87.PubMedCrossRef
25.
go back to reference Suter PM, Fairley HB, Isenberg MD. Optimum end expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.PubMedCrossRef Suter PM, Fairley HB, Isenberg MD. Optimum end expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.PubMedCrossRef
26.
go back to reference Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.PubMedCrossRef Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.PubMedCrossRef
27.
go back to reference Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38(3):802–7.PubMedCrossRef Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38(3):802–7.PubMedCrossRef
28.
go back to reference Quan SF, Falltrick RT, Schlobom RM. Extubation from ambient or expiratory positive airway pressure in adults. Anesthesiology. 1981;55(1):53–6.PubMedCrossRef Quan SF, Falltrick RT, Schlobom RM. Extubation from ambient or expiratory positive airway pressure in adults. Anesthesiology. 1981;55(1):53–6.PubMedCrossRef
29.
go back to reference Bikker IG, Van Bommel J, Miranda DR, et al. End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care. 2008;12:R145.PubMedPubMedCentralCrossRef Bikker IG, Van Bommel J, Miranda DR, et al. End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care. 2008;12:R145.PubMedPubMedCentralCrossRef
30.
go back to reference Richard JC, Maggiore SM, Jonson B, et al. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med. 2001;163:1609–13. Richard JC, Maggiore SM, Jonson B, et al. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med. 2001;163:1609–13.
31.
go back to reference Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef
32.
go back to reference Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.PubMedPubMedCentralCrossRef Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.PubMedPubMedCentralCrossRef
33.
go back to reference Marchioni A, Tonelli R, Rossi G, et al. Ventilatory support and mechanical properties of the fibrotic lung acting as a ‘squishy ball.’ Ann Intensive care. 2020;10:13.PubMedPubMedCentralCrossRef Marchioni A, Tonelli R, Rossi G, et al. Ventilatory support and mechanical properties of the fibrotic lung acting as a ‘squishy ball.’ Ann Intensive care. 2020;10:13.PubMedPubMedCentralCrossRef
34.
go back to reference Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med. 2001;163:69–78.PubMedCrossRef Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med. 2001;163:69–78.PubMedCrossRef
35.
go back to reference Suarez-Sipman F, Böhm SH, Tusman G, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35(1):214–21.CrossRef Suarez-Sipman F, Böhm SH, Tusman G, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35(1):214–21.CrossRef
37.
go back to reference Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med. 2006;41:4–18.PubMedCrossRef Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med. 2006;41:4–18.PubMedCrossRef
38.
go back to reference Altemeier WA, Sinclair SE. Hyperoxia in the intensive care unit: why is more not always better. Curr Opin Crit Care. 2007;13:73–8.PubMedCrossRef Altemeier WA, Sinclair SE. Hyperoxia in the intensive care unit: why is more not always better. Curr Opin Crit Care. 2007;13:73–8.PubMedCrossRef
39.
go back to reference Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.PubMedCrossRef Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.PubMedCrossRef
40.
go back to reference Martin D, De Jong A, Radermacher P. Is the U-shaped curve still of relevance to oxygenation of critically ill patients? Intensive Care Med. 2023;49:566–8.PubMedCrossRef Martin D, De Jong A, Radermacher P. Is the U-shaped curve still of relevance to oxygenation of critically ill patients? Intensive Care Med. 2023;49:566–8.PubMedCrossRef
41.
go back to reference Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.PubMedCrossRef Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.PubMedCrossRef
42.
go back to reference Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.PubMedCrossRef Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.PubMedCrossRef
43.
go back to reference Osman D, Monnet X, Castelain V, et al. Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Med. 2009;35:69–76.PubMedCrossRef Osman D, Monnet X, Castelain V, et al. Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Med. 2009;35:69–76.PubMedCrossRef
44.
45.
go back to reference Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths. A frequently unrecognized form of neuromechanical coupling. Chest. 2013;143(4):927–38. Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths. A frequently unrecognized form of neuromechanical coupling. Chest. 2013;143(4):927–38.
46.
go back to reference Rodrigues A, Telias I, Damiani LF, Brochard L. Reverse triggering during controlled ventilation. Am J Resp Crit Care Med. 2023;207(5):533–43.PubMedCrossRef Rodrigues A, Telias I, Damiani LF, Brochard L. Reverse triggering during controlled ventilation. Am J Resp Crit Care Med. 2023;207(5):533–43.PubMedCrossRef
47.
go back to reference Chiumello D, Pelosi P, Croci M, et al. The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J. 2001;18:107–14.PubMedCrossRef Chiumello D, Pelosi P, Croci M, et al. The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J. 2001;18:107–14.PubMedCrossRef
Metagegevens
Titel
Het instellen van de beademingsmachine
Auteur
Hans ter Haar
Copyright
2024
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-3031-7_6