Skip to main content
Top

2019 | OriginalPaper | Hoofdstuk

4. Herstelvermogen van het zenuwstelsel

Auteur : Dr. Ben van Cranenburgh

Gepubliceerd in: Neurorevalidatie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Ons zenuwstelsel beschikt over een aantal ingebouwde herstelmechanismen die nog kunnen worden gestimuleerd en aangevuld, onder andere door gerichte training en omgevingsaanpassing. Bij herstel na perifeer zenuwletsel ligt het accent op het herstel van de neurale bedrading, aanvankelijk een voorlopige, later een definitieve. Bij centrale laesies gaat het meer om het vinden van een andere strategie: andere taakverdeling van deelnemende hersengebieden (neurale reorganisatie), activeren van hersengebieden (opheffing van diaschisis/shock), inzet van andere functies (compensaties) en het bedenken en aanbrengen van omgevingsaanpassingen. Het vinden van deze nieuwe strategieën vindt plaats in etappes en kan jaren duren. Het betreft niet alleen motoriek (‘lopen’), maar ook taal, geheugen, aandacht, emoties, interesse en sociale vaardigheden. Bij neurodegeneratieve ziekten zijn continu plastische herstelmechanismen actief; soms zo effectief dat er ondanks de ziekte geen manifeste symptomen zijn. De mate van herstel hangt van vele factoren af, waarvan sommige duidelijk beïnvloed kunnen worden. Enkele liggen op het medische vlak (farmaca, stimulatietechnieken, transplantatie, medische conditie), maar de meeste zijn niet medisch van aard: motivatie, inzicht, support, omgevingsstructuur, fysiotherapie, logopedie en ergotherapeutische interventies.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Anderson, V., et al. (2011). Do children really recover better? Neurobehavioral plasticity after early brain insult. Brain 134, 2197–2221.PubMedCrossRef Anderson, V., et al. (2011). Do children really recover better? Neurobehavioral plasticity after early brain insult. Brain 134, 2197–2221.PubMedCrossRef
go back to reference Bach y Rita, P. (Ed.). (1980). Recovery of function: Theoretical considerations for brain injury rehabilitation. Bern: Huber. Bach y Rita, P. (Ed.). (1980). Recovery of function: Theoretical considerations for brain injury rehabilitation. Bern: Huber.
go back to reference Bestmann, S., et al. (2014). Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19(1), 13–20.PubMedCrossRef Bestmann, S., et al. (2014). Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19(1), 13–20.PubMedCrossRef
go back to reference Bezrad, E., et al. (2003). Presymptomatic compensation in Parkinsons’s disease is not dopamine-mediated. TINS 26(4), P. 215-22. Bezrad, E., et al. (2003). Presymptomatic compensation in Parkinsons’s disease is not dopamine-mediated. TINS 26(4), P. 215-22.
go back to reference Blesch, A., & Tuszynski, M. (2008). Spinal cord injury: Plasticity, regeneration and the challenge of translational drug development. Trends in Neuroscience, 32, 41–47.CrossRef Blesch, A., & Tuszynski, M. (2008). Spinal cord injury: Plasticity, regeneration and the challenge of translational drug development. Trends in Neuroscience, 32, 41–47.CrossRef
go back to reference Bradley, W. (1974). Disorders of peripheral nerves. Oxford: Blackwell. Bradley, W. (1974). Disorders of peripheral nerves. Oxford: Blackwell.
go back to reference Braun, M., et al. (2008). Reorganization of associative memory in humans with long-standing hippocampal damage. Brain, 131, 2742–2750.PubMedCrossRef Braun, M., et al. (2008). Reorganization of associative memory in humans with long-standing hippocampal damage. Brain, 131, 2742–2750.PubMedCrossRef
go back to reference Bridge, H., et al. (2008). Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain, 131, 1433–1444.PubMedCrossRef Bridge, H., et al. (2008). Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain, 131, 1433–1444.PubMedCrossRef
go back to reference Brodal, A. (1973). Self-observations and neuro-anatomical considerations after a stroke. Brain, 96, 675–694.PubMedCrossRef Brodal, A. (1973). Self-observations and neuro-anatomical considerations after a stroke. Brain, 96, 675–694.PubMedCrossRef
go back to reference Bütefisch, C., et al. (2003). Remote changes in cortical excitability after stroke. Brain, 126, 470–481.PubMedCrossRef Bütefisch, C., et al. (2003). Remote changes in cortical excitability after stroke. Brain, 126, 470–481.PubMedCrossRef
go back to reference Caeyenberghs, K., et al. (2012). Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 135, 1293–1307.PubMedCrossRef Caeyenberghs, K., et al. (2012). Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 135, 1293–1307.PubMedCrossRef
go back to reference Carr, L., et al. (1993). Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain, 116, 1223–1247.PubMedCrossRef Carr, L., et al. (1993). Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain, 116, 1223–1247.PubMedCrossRef
go back to reference Carrera, E., & Tononi, G. (2014) Diaschisis, past, present, future. Brain, 137, P.2408-22. Carrera, E., & Tononi, G. (2014) Diaschisis, past, present, future. Brain, 137, P.2408-22.
go back to reference Castellanos, N., et al. (2010). Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain, 133, 2365–2381.PubMedCrossRef Castellanos, N., et al. (2010). Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain, 133, 2365–2381.PubMedCrossRef
go back to reference Chen, M., & Zheng, B. (2014). Axon plasticity in the mammalian central nervous system after injury. Trends in Neurosciences, 37(10), 583–593. Chen, M., & Zheng, B. (2014). Axon plasticity in the mammalian central nervous system after injury. Trends in Neurosciences, 37(10), 583–593.
go back to reference Cicerone, K., et al. (2000). Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Archives of Physical Medicine and Rehabilitation, 81, 1596–1615.PubMedCrossRef Cicerone, K., et al. (2000). Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Archives of Physical Medicine and Rehabilitation, 81, 1596–1615.PubMedCrossRef
go back to reference Cicerone, K., et al. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86, 1681–1692.PubMedCrossRef Cicerone, K., et al. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86, 1681–1692.PubMedCrossRef
go back to reference Cicerone, K., et al. (2011). Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Archives of Physical Medicine and Rehabilitation, 92, 519–530.PubMedCrossRef Cicerone, K., et al. (2011). Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Archives of Physical Medicine and Rehabilitation, 92, 519–530.PubMedCrossRef
go back to reference Cooke, S., & Bliss, T. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedCrossRef Cooke, S., & Bliss, T. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedCrossRef
go back to reference Cotman, C., & Berchtold, N. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 6. Cotman, C., & Berchtold, N. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 6.
go back to reference Cotman, C., et al. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neuroscience, 30, 465–470.CrossRef Cotman, C., et al. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neuroscience, 30, 465–470.CrossRef
go back to reference Curt, A., et al. (2002). Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain, 125, 2567–2578.PubMedCrossRef Curt, A., et al. (2002). Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain, 125, 2567–2578.PubMedCrossRef
go back to reference DeFelipe, J. (2002). Sesquicentenary of the birthday of Santiago Ramón y Cajal, the father of modern neuroscience. Trends in Neurosciences, 25, 481.PubMedCrossRef DeFelipe, J. (2002). Sesquicentenary of the birthday of Santiago Ramón y Cajal, the father of modern neuroscience. Trends in Neurosciences, 25, 481.PubMedCrossRef
go back to reference Desmedt, J. (Ed.). (1973). New concepts of the motor unit, neuromuscular disorders, electromyographic kinesiology. Basel: Karger. Desmedt, J. (Ed.). (1973). New concepts of the motor unit, neuromuscular disorders, electromyographic kinesiology. Basel: Karger.
go back to reference Desmurget, M., et al. (2007). Contrasting acute and slow-growing lesions: A new door to brain plasticity. Brain, 130, 898–914.PubMedCrossRef Desmurget, M., et al. (2007). Contrasting acute and slow-growing lesions: A new door to brain plasticity. Brain, 130, 898–914.PubMedCrossRef
go back to reference Dirnagl, U., et al. (2003). Ischemic tolerance and endogenous neuroprotection. Trends in Neuroscience, 26.PubMedCrossRef Dirnagl, U., et al. (2003). Ischemic tolerance and endogenous neuroprotection. Trends in Neuroscience, 26.PubMedCrossRef
go back to reference Dubois-Dalcq, M., et al. (2008). From fish to man: Understanding endogenous remyelination in central nervous system demyelinating diseases. Brain, 131, 1686–1700.PubMedCrossRef Dubois-Dalcq, M., et al. (2008). From fish to man: Understanding endogenous remyelination in central nervous system demyelinating diseases. Brain, 131, 1686–1700.PubMedCrossRef
go back to reference EClipSE Collaborative Members (2010). Education, the brain and dementia: Neuroprotection or compensation. Brain, 133, 2210–2216.CrossRef EClipSE Collaborative Members (2010). Education, the brain and dementia: Neuroprotection or compensation. Brain, 133, 2210–2216.CrossRef
go back to reference Eidelberg, E., & Stein, D. (1977). Functional recovery after lesions of the nervous system. In Neurosciences Research Program Dashin (vol. 12). Cambridge: MIT Press. Eidelberg, E., & Stein, D. (1977). Functional recovery after lesions of the nervous system. In Neurosciences Research Program Dashin (vol. 12). Cambridge: MIT Press.
go back to reference Endo, T., et al. (2007). Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain, 130, 2951–2961.PubMedCrossRef Endo, T., et al. (2007). Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain, 130, 2951–2961.PubMedCrossRef
go back to reference Engelien, A., et al. (2000). The neural correlates of “deaf-hearing” in man. Conscious sensory awareness enabled by attentional modulation. Brain, 123, 532–545.PubMedCrossRef Engelien, A., et al. (2000). The neural correlates of “deaf-hearing” in man. Conscious sensory awareness enabled by attentional modulation. Brain, 123, 532–545.PubMedCrossRef
go back to reference Finger, S. (Ed.). (1978). Recovery from brain damage. Research and theory. New York: Plenum. Finger, S. (Ed.). (1978). Recovery from brain damage. Research and theory. New York: Plenum.
go back to reference Finger, S., & Stein, D. (1982). Brain damage and recovery. New York: Academic Press. Finger, S., & Stein, D. (1982). Brain damage and recovery. New York: Academic Press.
go back to reference Finger, S., et al. (1988). Brain injury and recovery. Theoretical and controversial issues. New York: Plenum.CrossRef Finger, S., et al. (1988). Brain injury and recovery. Theoretical and controversial issues. New York: Plenum.CrossRef
go back to reference Fridman, E., et al. (2004). Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 127, 747–758.PubMedCrossRef Fridman, E., et al. (2004). Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 127, 747–758.PubMedCrossRef
go back to reference Galtrey, C., et al. (2007). Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain, 130, 926–939.PubMedCrossRef Galtrey, C., et al. (2007). Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain, 130, 926–939.PubMedCrossRef
go back to reference Gerloff, C., et al. (2006). Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well-recovered patients after capsular stroke. Brain, 129, 791–808.PubMedCrossRef Gerloff, C., et al. (2006). Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well-recovered patients after capsular stroke. Brain, 129, 791–808.PubMedCrossRef
go back to reference Gibson, C., et al. (2008). Progesterone for the treatment of experimental brain injury; a systematic review. Brain, 131, 318–328.PubMedCrossRef Gibson, C., et al. (2008). Progesterone for the treatment of experimental brain injury; a systematic review. Brain, 131, 318–328.PubMedCrossRef
go back to reference Gibson, C., et al. (2011). Progesterone is neuroprotective following cerebral ischemia in reproductively ageing female mice. Brain, 134, 2125–2133.PubMedCrossRef Gibson, C., et al. (2011). Progesterone is neuroprotective following cerebral ischemia in reproductively ageing female mice. Brain, 134, 2125–2133.PubMedCrossRef
go back to reference Girgis, J., et al. (2007). Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain, 130, 2993–3003.PubMedCrossRef Girgis, J., et al. (2007). Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain, 130, 2993–3003.PubMedCrossRef
go back to reference Grady, C.L., & Kapur, S. (1999). The use of neuroimagine in neurohabilitative research. In: Stuss, D. et al. (eds.), Cognitive neurorehabilitation. Cambridge: Cambridge University Press. Grady, C.L., & Kapur, S. (1999). The use of neuroimagine in neurohabilitative research. In: Stuss, D. et al. (eds.), Cognitive neurorehabilitation. Cambridge: Cambridge University Press.
go back to reference Grefkes, C., & Fink, G. (2011). Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches. Brain, 134, 1264–1276.PubMedPubMedCentralCrossRef Grefkes, C., & Fink, G. (2011). Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches. Brain, 134, 1264–1276.PubMedPubMedCentralCrossRef
go back to reference Guilbert, A., et al. (2014). Hearing and music in unilateral neglect neurorehabilitation. Front. Psychol. 5, P. 1503. Guilbert, A., et al. (2014). Hearing and music in unilateral neglect neurorehabilitation. Front. Psychol. 5, P. 1503.
go back to reference Hamdy, S., & Rothwell, J. (1998). Gut feelings about recovery after stroke: The organization and reorganization of human swallowing motor cortex. Trends in Neurosciences, 21, 278.PubMedCrossRef Hamdy, S., & Rothwell, J. (1998). Gut feelings about recovery after stroke: The organization and reorganization of human swallowing motor cortex. Trends in Neurosciences, 21, 278.PubMedCrossRef
go back to reference Heald, A., et al. (1993). Longitudinal study of central motor conduction time following stroke. Part 1 en 2. Brain, 116. P. 1355-85. Heald, A., et al. (1993). Longitudinal study of central motor conduction time following stroke. Part 1 en 2. Brain, 116. P. 1355-85.
go back to reference Hertz-Pannier, L., et al. (2002). Late plasticity for language in a child’s non-dominant hemisphere: A pre- and post-surgery fMRI study. Brain, 125, 361–372.PubMedCrossRef Hertz-Pannier, L., et al. (2002). Late plasticity for language in a child’s non-dominant hemisphere: A pre- and post-surgery fMRI study. Brain, 125, 361–372.PubMedCrossRef
go back to reference Hillary, F., & Grafman, J. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in Cognitive Sciences, 21(5), 385–400. Hillary, F., & Grafman, J. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in Cognitive Sciences, 21(5), 385–400.
go back to reference Holloway, V., et al. (2000). The reorganization of sensorimotor function in children after hemisperectomy: A functional MRI and somatosensory evoked potential study. Brain, 123, 2432–2444.PubMedCrossRef Holloway, V., et al. (2000). The reorganization of sensorimotor function in children after hemisperectomy: A functional MRI and somatosensory evoked potential study. Brain, 123, 2432–2444.PubMedCrossRef
go back to reference Huber, M. (2014). Towards a new, dynamic concept of Health: Its operationalisation and use in public health and healthcare, and in evaluating health effects of food. Maastricht: Maastricht University. Huber, M. (2014). Towards a new, dynamic concept of Health: Its operationalisation and use in public health and healthcare, and in evaluating health effects of food. Maastricht: Maastricht University.
go back to reference Hummel, F., et al. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128, 490–499.PubMedCrossRef Hummel, F., et al. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128, 490–499.PubMedCrossRef
go back to reference Isa, T. (2017). The brain is needed to cure spinal cord injury. Trends in Neurosciences, 40(10), 625–636.PubMedCrossRef Isa, T. (2017). The brain is needed to cure spinal cord injury. Trends in Neurosciences, 40(10), 625–636.PubMedCrossRef
go back to reference Jaillard, A., et al. (2005). Vicarious function within the human primary motor cortex? Brain, 128, 1122-1138.PubMedCrossRef Jaillard, A., et al. (2005). Vicarious function within the human primary motor cortex? Brain, 128, 1122-1138.PubMedCrossRef
go back to reference Jensen, S., & Yong, V. (2016). Activity-dependent and experience-driven myelination provide new directions for the management of multiple sclerosis. Trends in Neurosciences, 39(6), 356–365. Jensen, S., & Yong, V. (2016). Activity-dependent and experience-driven myelination provide new directions for the management of multiple sclerosis. Trends in Neurosciences, 39(6), 356–365.
go back to reference Johansen-Berg, H., et al. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain, 125, 2731–2742.PubMedCrossRef Johansen-Berg, H., et al. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain, 125, 2731–2742.PubMedCrossRef
go back to reference Johansson, L., et al. (2010). Midlife psychological stress and risk of dementia: A 35-year longitudinal population study. Brain, 133, 2217–2224.PubMedCrossRef Johansson, L., et al. (2010). Midlife psychological stress and risk of dementia: A 35-year longitudinal population study. Brain, 133, 2217–2224.PubMedCrossRef
go back to reference Judd, T. (2003). Rehabilitation of the emotional problems of brain disorders in developing countries. Neuropsychological Rehabilitation, 13, 307–325.PubMedCrossRef Judd, T. (2003). Rehabilitation of the emotional problems of brain disorders in developing countries. Neuropsychological Rehabilitation, 13, 307–325.PubMedCrossRef
go back to reference Kaas, J. (Ed.). (2001). The mutable brain. Amsterdam: Harwood. Kaas, J. (Ed.). (2001). The mutable brain. Amsterdam: Harwood.
go back to reference Karten, Y., et al. (2005). Stress in early life inhibits neurogenesis in adulthood. Trends in Neurosciences, 28, 171–172.PubMedCrossRef Karten, Y., et al. (2005). Stress in early life inhibits neurogenesis in adulthood. Trends in Neurosciences, 28, 171–172.PubMedCrossRef
go back to reference Knecht, S. (2004). Does language lataralization depend on the hippocampus? Brain, 127, 1217–1218.PubMedCrossRef Knecht, S. (2004). Does language lataralization depend on the hippocampus? Brain, 127, 1217–1218.PubMedCrossRef
go back to reference Koganemaru, S., et al. (2010). Recovery of upper limb function due to enhanced use-dependent plasticity in chronic stroke patients. Brain, 133, 3373–3384.PubMedCrossRef Koganemaru, S., et al. (2010). Recovery of upper limb function due to enhanced use-dependent plasticity in chronic stroke patients. Brain, 133, 3373–3384.PubMedCrossRef
go back to reference Korkman, M., & Von Wendt, L. (1995). Evidence of altered dominance in children with congenital spastic hemiplegia. Journal of International Neuropsychological Society, 1, 261–270.CrossRef Korkman, M., & Von Wendt, L. (1995). Evidence of altered dominance in children with congenital spastic hemiplegia. Journal of International Neuropsychological Society, 1, 261–270.CrossRef
go back to reference Kotter, M., et al. (2011). Enhancing remyelination in disease - can we wrap it up? Brain 134, 1882-1890. Kotter, M., et al. (2011). Enhancing remyelination in disease - can we wrap it up? Brain 134, 1882-1890.
go back to reference Kramer, A., & Erickson, K. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Science, 11, 342–348.CrossRef Kramer, A., & Erickson, K. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Science, 11, 342–348.CrossRef
go back to reference Lenman, J., & Ritchie, A. (1977). Clinical electromyography (2nd ed.). London: Pitman Medical. Lenman, J., & Ritchie, A. (1977). Clinical electromyography (2nd ed.). London: Pitman Medical.
go back to reference Levin, H., & Grafman, J. (Eds.). (2000). Cerebral reorganization of function after brain damage. Oxford: Oxford University Press. Levin, H., & Grafman, J. (Eds.). (2000). Cerebral reorganization of function after brain damage. Oxford: Oxford University Press.
go back to reference Liégeois, F., et al. (2004). Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain, 127, 1229-1236.PubMedCrossRef Liégeois, F., et al. (2004). Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain, 127, 1229-1236.PubMedCrossRef
go back to reference Liepert, J., et al. (2000). Therapie-induzierte kortikale reorganisation bei Schlaganfallpatienten. Neurologie & Rehabilitation, 6, 177–183. Liepert, J., et al. (2000). Therapie-induzierte kortikale reorganisation bei Schlaganfallpatienten. Neurologie & Rehabilitation, 6, 177–183.
go back to reference Lindeman, H., & Van Cranenburgh, B. (2016). Hersteld maar niet genezen. Haarlem: Stichting ITON. Lindeman, H., & Van Cranenburgh, B. (2016). Hersteld maar niet genezen. Haarlem: Stichting ITON.
go back to reference Luria, A. (1963). Restoration of function after brain injury. Oxford: Pergamon. Luria, A. (1963). Restoration of function after brain injury. Oxford: Pergamon.
go back to reference Mazavet, D., et al. (2003). Changes in propriospinally mediated excitation of upper limb motoneurons in stroke patients. Brain, 126, 988–1000.CrossRef Mazavet, D., et al. (2003). Changes in propriospinally mediated excitation of upper limb motoneurons in stroke patients. Brain, 126, 988–1000.CrossRef
go back to reference Mbwana, J., et al. (2009). Limitations to plasticity of language network reorganization in localization related epilepsy. Brain, 132, 347–356.PubMedCrossRef Mbwana, J., et al. (2009). Limitations to plasticity of language network reorganization in localization related epilepsy. Brain, 132, 347–356.PubMedCrossRef
go back to reference McHenry, L. (1969). Garrison’s History of Neurology. Springfield: Thomas. McHenry, L. (1969). Garrison’s History of Neurology. Springfield: Thomas.
go back to reference Mima, T., et al. (1999). Brain structures related to active and passive finger movements in man. Brain, 122. p. 1989-97.PubMedCrossRef Mima, T., et al. (1999). Brain structures related to active and passive finger movements in man. Brain, 122. p. 1989-97.PubMedCrossRef
go back to reference Morgen, K., et al. (2004). Training-dependent plasticity in patients with multiple sclerosis. Brain, 127. p. 2506-7.PubMedCrossRef Morgen, K., et al. (2004). Training-dependent plasticity in patients with multiple sclerosis. Brain, 127. p. 2506-7.PubMedCrossRef
go back to reference Mudie, M., & Matyas, T. (2000). Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Journal of Disability and Rehabilitation, 22, 23–37.PubMedCrossRef Mudie, M., & Matyas, T. (2000). Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Journal of Disability and Rehabilitation, 22, 23–37.PubMedCrossRef
go back to reference Mummentaler, M., & Schliack, H. (1977). Läsionen, peripherer Nerven: Diagnostik und Therapie (3rd ed.). Stuttgart: Thieme. Mummentaler, M., & Schliack, H. (1977). Läsionen, peripherer Nerven: Diagnostik und Therapie (3rd ed.). Stuttgart: Thieme.
go back to reference Murray, A., et al. (2011). The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer’s diseases. Brain, 134, 3687–3696.PubMedCrossRef Murray, A., et al. (2011). The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer’s diseases. Brain, 134, 3687–3696.PubMedCrossRef
go back to reference Netz, J., et al. (1997). Reorganization of motor output in the non-affected hemisphere after stroke. Brain, 120, 1579–1586.PubMedCrossRef Netz, J., et al. (1997). Reorganization of motor output in the non-affected hemisphere after stroke. Brain, 120, 1579–1586.PubMedCrossRef
go back to reference Newton, J., et al. (2006). Non-invasive mapping of corticofugal fibres from multiple motor areas – Relevance to stroke recovery. Brain, 129, 1844–1858.PubMedCrossRef Newton, J., et al. (2006). Non-invasive mapping of corticofugal fibres from multiple motor areas – Relevance to stroke recovery. Brain, 129, 1844–1858.PubMedCrossRef
go back to reference Nishimura, Y., et al. (2009). A subcortical oscillatory network contributes to recovery of hand dexterity after spinal cord injury. Brain, 132, 709–721.PubMedPubMedCentralCrossRef Nishimura, Y., et al. (2009). A subcortical oscillatory network contributes to recovery of hand dexterity after spinal cord injury. Brain, 132, 709–721.PubMedPubMedCentralCrossRef
go back to reference Noppeney, U., et al. (2005). Reading skills after left anterior temporal lobe resection: An fMRI study. Brain, 128, 1377–1385.PubMedCrossRef Noppeney, U., et al. (2005). Reading skills after left anterior temporal lobe resection: An fMRI study. Brain, 128, 1377–1385.PubMedCrossRef
go back to reference Olausson, H., et al. (2001). Cortical activation by tactile and painful stimuli in hemispherectomized patients. Brain, 124, 916–927.PubMedCrossRef Olausson, H., et al. (2001). Cortical activation by tactile and painful stimuli in hemispherectomized patients. Brain, 124, 916–927.PubMedCrossRef
go back to reference Pantano, P., et al. (1996). Motor recovery after stroke: Morphological and functional brain alterations. Brain, 119, 1849–1857.PubMedCrossRef Pantano, P., et al. (1996). Motor recovery after stroke: Morphological and functional brain alterations. Brain, 119, 1849–1857.PubMedCrossRef
go back to reference Pantano, P., et al. (2002). Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain, 125, 1607–1615.PubMedCrossRef Pantano, P., et al. (2002). Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain, 125, 1607–1615.PubMedCrossRef
go back to reference Parsons, L.M. (2003). Exploring the Functional Neuroanatomy of Music Performance, Perception, and Comprehension. In: Peretz, I. en Zatorre, R. (eds.), The cognitive neuroscience of music. Oxford: Oxford Universiy Press.CrossRef Parsons, L.M. (2003). Exploring the Functional Neuroanatomy of Music Performance, Perception, and Comprehension. In: Peretz, I. en Zatorre, R. (eds.), The cognitive neuroscience of music. Oxford: Oxford Universiy Press.CrossRef
go back to reference Perls, T. (2004). Centenarians who avoid dementia. Trends in Neuroscience, 27, 633–636.CrossRef Perls, T. (2004). Centenarians who avoid dementia. Trends in Neuroscience, 27, 633–636.CrossRef
go back to reference Peschanski, M., et al. (2004). Integrating fetal neural transplants into a therapeutic strategy: The example of Huntington’s disease. Brain, 127, 1219–1228.PubMedCrossRef Peschanski, M., et al. (2004). Integrating fetal neural transplants into a therapeutic strategy: The example of Huntington’s disease. Brain, 127, 1219–1228.PubMedCrossRef
go back to reference Phillips, C., & Porter, R. (1977). Corticospinal neurons. London: Academic Press. Phillips, C., & Porter, R. (1977). Corticospinal neurons. London: Academic Press.
go back to reference Prigatano, G. (1999). Principles of neuropsychological rehabilitation. Oxford: Oxford University Press. Prigatano, G. (1999). Principles of neuropsychological rehabilitation. Oxford: Oxford University Press.
go back to reference Raymont, V., et al. (2008). Demographic, structural and genetic predictors of late cognitive decline after penetrating head injury. Brain, 131, 543–558.PubMedCrossRef Raymont, V., et al. (2008). Demographic, structural and genetic predictors of late cognitive decline after penetrating head injury. Brain, 131, 543–558.PubMedCrossRef
go back to reference Reddy, H., et al. (2002). Functional brain reorganization for hand movement in patients with multiple sclerosis: Defining distinct effects of injury and disability. Brain, 125, 2646–2657.PubMedCrossRef Reddy, H., et al. (2002). Functional brain reorganization for hand movement in patients with multiple sclerosis: Defining distinct effects of injury and disability. Brain, 125, 2646–2657.PubMedCrossRef
go back to reference Reitmeir, R., et al. (2011). Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain, 134, 84–99.PubMedCrossRef Reitmeir, R., et al. (2011). Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain, 134, 84–99.PubMedCrossRef
go back to reference Richter, M., et al. (2008). Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain, 131, 1391–1401.PubMedCrossRef Richter, M., et al. (2008). Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain, 131, 1391–1401.PubMedCrossRef
go back to reference Rijntjes, M., & Weiller, C. (2001). Rehabilitation nach hemiparese und aphasie: Einige neue einsichten zu grundlagen und aussichten auf neue therapien. Neurologie & Rehabilitation, 7, 219–227. Rijntjes, M., & Weiller, C. (2001). Rehabilitation nach hemiparese und aphasie: Einige neue einsichten zu grundlagen und aussichten auf neue therapien. Neurologie & Rehabilitation, 7, 219–227.
go back to reference Robertson, I., & Halligan, P. (1999). Spatial neglect: A clinical handbook for diagnosis and treatment. Hove: Psychology Press. Robertson, I., & Halligan, P. (1999). Spatial neglect: A clinical handbook for diagnosis and treatment. Hove: Psychology Press.
go back to reference Ruch, T., & Patton, H. (1979). Physiology and biophysics. The brain and neural function. 20th ed. Philadelphia: Saunders. Ruch, T., & Patton, H. (1979). Physiology and biophysics. The brain and neural function. 20th ed. Philadelphia: Saunders.
go back to reference Sabatini, U., et al. (2000). Cortical motor reorganization in akinetic patients with Parkinson’s disease: A functional MRI study. Brain, 123, 394–403.PubMedCrossRef Sabatini, U., et al. (2000). Cortical motor reorganization in akinetic patients with Parkinson’s disease: A functional MRI study. Brain, 123, 394–403.PubMedCrossRef
go back to reference Sale, A. (2018). A systematic look at environmental modulation and its impact on brain development. Trends in Neurosciences, 41(1), 4–17.PubMedCrossRef Sale, A. (2018). A systematic look at environmental modulation and its impact on brain development. Trends in Neurosciences, 41(1), 4–17.PubMedCrossRef
go back to reference Saur, D., et al. (2006). Dynamics of language reorganization after stroke. Brain, 129, 1371–1384.PubMedCrossRef Saur, D., et al. (2006). Dynamics of language reorganization after stroke. Brain, 129, 1371–1384.PubMedCrossRef
go back to reference Sharp, D., et al. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134, 2233–2247.PubMedCrossRef Sharp, D., et al. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134, 2233–2247.PubMedCrossRef
go back to reference Shimizu, T., et al. (2002). Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain, 125, 1896–1907.PubMedCrossRef Shimizu, T., et al. (2002). Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain, 125, 1896–1907.PubMedCrossRef
go back to reference Small, S., et al. (2002). Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain, 125, 1544–1557.PubMedCrossRef Small, S., et al. (2002). Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain, 125, 1544–1557.PubMedCrossRef
go back to reference Smith, J., et al. (2007). Inosine promotes recovery of skilled motor function in a model of focal brain injury. Brain, 130, 915–925.PubMedCrossRef Smith, J., et al. (2007). Inosine promotes recovery of skilled motor function in a model of focal brain injury. Brain, 130, 915–925.PubMedCrossRef
go back to reference Soleman, S., et al. (2012). Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain, 135, 1210–1223.PubMedCrossRef Soleman, S., et al. (2012). Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain, 135, 1210–1223.PubMedCrossRef
go back to reference Spillane, J. (1982). An atlas of clinical neurology. 3rd ed. oxford: Oxford University Press. Spillane, J. (1982). An atlas of clinical neurology. 3rd ed. oxford: Oxford University Press.
go back to reference Staudt, M., et al. (2002). Two types of ipsilateral reorganization in congenital hemiparesis: A TMS and fMRI study. Brain, 125, 2222–2237.PubMedCrossRef Staudt, M., et al. (2002). Two types of ipsilateral reorganization in congenital hemiparesis: A TMS and fMRI study. Brain, 125, 2222–2237.PubMedCrossRef
go back to reference Stein, D., et al. (1974). Plasticity and recovery of function in the central nervous system. New York: Academic Press. Stein, D., et al. (1974). Plasticity and recovery of function in the central nervous system. New York: Academic Press.
go back to reference Stein, D., et al. (1995). Brain repair. Oxford: Oxford University Press. Stein, D., et al. (1995). Brain repair. Oxford: Oxford University Press.
go back to reference Steward, O. (1989). Reorganization of neuronal connections following CNS trauma: Principles and experimental paradigms. Journal of Neurotrauma, 6, 99.PubMedCrossRef Steward, O. (1989). Reorganization of neuronal connections following CNS trauma: Principles and experimental paradigms. Journal of Neurotrauma, 6, 99.PubMedCrossRef
go back to reference Stinear, C., et al. (2007). Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain, 130, 170–180.PubMedCrossRef Stinear, C., et al. (2007). Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain, 130, 170–180.PubMedCrossRef
go back to reference Stuss, D., et al. (Eds.). (1999). Cognitive neurorehabilitation. Cambridge: Cambridge University Press. Stuss, D., et al. (Eds.). (1999). Cognitive neurorehabilitation. Cambridge: Cambridge University Press.
go back to reference Sumner, A. (Ed.) (1980). The physiology of peripheral nerve disease. Philadelphia: Saunders. Sumner, A. (Ed.) (1980). The physiology of peripheral nerve disease. Philadelphia: Saunders.
go back to reference Sumowski, J., et al. (2010). Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: Functional magnetic resonance imaging evidence for cognitive reserve. Brain, 133, 362–374.PubMedCrossRef Sumowski, J., et al. (2010). Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: Functional magnetic resonance imaging evidence for cognitive reserve. Brain, 133, 362–374.PubMedCrossRef
go back to reference Taylor, R. (1979). Medicine out of control: the anatomy of a malignant technology. Melbourne: Sun books. Vertaling: Stuurloze geneeskunde: analyse van een nietsontziende technologie. Lochem: De Tijdstroom, Lochem, 1983. Taylor, R. (1979). Medicine out of control: the anatomy of a malignant technology. Melbourne: Sun books. Vertaling: Stuurloze geneeskunde: analyse van een nietsontziende technologie. Lochem: De Tijdstroom, Lochem, 1983.
go back to reference Teasdale, G., et al. (2000). Apolipoprotein E and subjective symptomatology following brain injury rehabilitation. Neuropsychological Rehabilitation, 10, 151–166.CrossRef Teasdale, G., et al. (2000). Apolipoprotein E and subjective symptomatology following brain injury rehabilitation. Neuropsychological Rehabilitation, 10, 151–166.CrossRef
go back to reference Teasdale, G., et al. (2005). The association between APOE ε4, age and outcome after head injury: A prospective cohort study. Brain, 128, 2556–2561.PubMedCrossRef Teasdale, G., et al. (2005). The association between APOE ε4, age and outcome after head injury: A prospective cohort study. Brain, 128, 2556–2561.PubMedCrossRef
go back to reference Terwel, J. (2011). Alles is revalidatie. Delft: Eburon. Terwel, J. (2011). Alles is revalidatie. Delft: Eburon.
go back to reference Töpper, et al. (2001). Mechanismen der raschen motorischen restitution nach schlaganfall. Neurologie & Rehabilitation, 7, 301. Töpper, et al. (2001). Mechanismen der raschen motorischen restitution nach schlaganfall. Neurologie & Rehabilitation, 7, 301.
go back to reference Toxopeus, P. (1999). Je komt weer helemaal in mijn hoofd zitten. Maarssen: Elsevier. Toxopeus, P. (1999). Je komt weer helemaal in mijn hoofd zitten. Maarssen: Elsevier.
go back to reference Tracy, J., et al. (2015). Cognitive plasticity in neurologic disorders. Oxford: Oxford University Press. Tracy, J., et al. (2015). Cognitive plasticity in neurologic disorders. Oxford: Oxford University Press.
go back to reference Ueno, M., et al. (2012). Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury. Brain, 135, 1253–1267.PubMedCrossRef Ueno, M., et al. (2012). Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury. Brain, 135, 1253–1267.PubMedCrossRef
go back to reference Uzzel, B., & Gross, Y. (Eds.). (1986). Clinical neuropsychology of intervention. Boston: Martinus Nijhoff. Uzzel, B., & Gross, Y. (Eds.). (1986). Clinical neuropsychology of intervention. Boston: Martinus Nijhoff.
go back to reference Van Boven, W., & Johnson, K. (1994). A psychophysical study of the mechanisms of sensory recovery following nerve injury in humans. Brain, 117, 149–167.PubMedCrossRef Van Boven, W., & Johnson, K. (1994). A psychophysical study of the mechanisms of sensory recovery following nerve injury in humans. Brain, 117, 149–167.PubMedCrossRef
go back to reference Van Cranenburgh, B. (2018). Muziek en brein. Haarlem: Stichting ITON. Van Cranenburgh, B. (2018). Muziek en brein. Haarlem: Stichting ITON.
go back to reference Van Empelen, R., et al. (2004). Functional consequences of hemispherectomy. Brain, 127, 2071–2079.PubMedCrossRef Van Empelen, R., et al. (2004). Functional consequences of hemispherectomy. Brain, 127, 2071–2079.PubMedCrossRef
go back to reference Van Heugten, C. (Red.). (2001). Revalidatie na een beroerte. Den Haag: Nederlandse Hartstichting. Van Heugten, C. (Red.). (2001). Revalidatie na een beroerte. Den Haag: Nederlandse Hartstichting.
go back to reference Van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neuroscience, 32, 283–290.CrossRef Van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neuroscience, 32, 283–290.CrossRef
go back to reference Vargha-Khadem, F., et al. (1997). Onset of speech after left hemispherectomy in a nine-year-old boy. Brain, 120, 159–182.PubMedCrossRef Vargha-Khadem, F., et al. (1997). Onset of speech after left hemispherectomy in a nine-year-old boy. Brain, 120, 159–182.PubMedCrossRef
go back to reference Wade, D., et al. (1985). Stroke, a critical approach to diagnosis, treatment and management. Londen: Chapman & Hall. Wade, D., et al. (1985). Stroke, a critical approach to diagnosis, treatment and management. Londen: Chapman & Hall.
go back to reference Wang, L., et al. (2010). Dynamic functional reorganization of the motor execution network after stroke. Brain, 133, 1224-1238. Wang, L., et al. (2010). Dynamic functional reorganization of the motor execution network after stroke. Brain, 133, 1224-1238.
go back to reference Ward, N.S., & Frackowiak, R. (2003). Age-related changes in the neural correlates of motor performance. Brain, 126, 873–888.PubMedCrossRef Ward, N.S., & Frackowiak, R. (2003). Age-related changes in the neural correlates of motor performance. Brain, 126, 873–888.PubMedCrossRef
go back to reference Ward, N.S., et al. (2003). Neural correlates of outcome after stroke: A cross-sectional fMRI study. Brain, 126, 1430-1448.PubMedCrossRef Ward, N.S., et al. (2003). Neural correlates of outcome after stroke: A cross-sectional fMRI study. Brain, 126, 1430-1448.PubMedCrossRef
go back to reference Ward, N.S., et al. (2006). Motor system activation after subcortical stroke depends on corticospinal integrity. Brain, 129, 809–819.PubMedCrossRef Ward, N.S., et al. (2006). Motor system activation after subcortical stroke depends on corticospinal integrity. Brain, 129, 809–819.PubMedCrossRef
go back to reference Wenger, E., et al. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in Cognitive Sciences, 21(12), 930–939.PubMedPubMedCentralCrossRef Wenger, E., et al. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in Cognitive Sciences, 21(12), 930–939.PubMedPubMedCentralCrossRef
go back to reference Zaunmüller, L., et al. (2009). Rehabilitation of arithmetic fact retrieval via extensive practice: A combined fMRI and behavioral case-study. Neuropsychological Rehabilitation, 19, 422–443.PubMedCrossRef Zaunmüller, L., et al. (2009). Rehabilitation of arithmetic fact retrieval via extensive practice: A combined fMRI and behavioral case-study. Neuropsychological Rehabilitation, 19, 422–443.PubMedCrossRef
go back to reference Zholudeva, L., et al. (2018). The neuroplastic and therapeutic potential of spinal interneurons in the injured spinal cord. Trends in Neurosciences, 41(9), 625–639.PubMedPubMedCentralCrossRef Zholudeva, L., et al. (2018). The neuroplastic and therapeutic potential of spinal interneurons in the injured spinal cord. Trends in Neurosciences, 41(9), 625–639.PubMedPubMedCentralCrossRef
Metagegevens
Titel
Herstelvermogen van het zenuwstelsel
Auteur
Dr. Ben van Cranenburgh
Copyright
2019
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2318-0_4