Skip to main content
Top
Gepubliceerd in:

21-04-2018 | Original Article

Going the distance and beyond: simulated low vision increases perception of distance traveled during locomotion

Auteurs: Kristina M. Rand, Erica M. Barhorst-Cates, Eren Kiris, William B. Thompson, Sarah H. Creem-Regehr

Gepubliceerd in: Psychological Research | Uitgave 7/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

In a series of experiments, we tested the hypothesis that severely degraded viewing conditions during locomotion distort the perception of distance traveled. Some research suggests that there is little-to-no systematic error in perceiving closer distances from a static viewpoint with severely degraded acuity and contrast sensitivity (which we will refer to as blur). However, several related areas of research—extending across domains of perception, attention, and spatial learning—suggest that degraded acuity and contrast sensitivity would affect estimates of distance traveled during locomotion. In a first experiment, we measured estimations of distance traveled in a real-world locomotion task and found that distances were overestimated with blur compared to normal vision using two measures: verbal reports and visual matching (Experiments 1 a, b, and c). In Experiment 2, participants indicated their estimate of the length of a previously traveled path by actively walking an equivalent distance in a viewing condition that either matched their initial path (e.g., blur/blur) or did not match (e.g., blur/normal). Overestimation in blur was found only when participants learned the path in blur and made estimates in normal vision (not in matched blur learning/judgment trials), further suggesting a reliance on dynamic visual information in estimates of distance traveled. In Experiment 3, we found evidence that perception of speed is similarly affected by the blur vision condition, showing an overestimation in perception of speed experienced in wheelchair locomotion during blur compared to normal vision. Taken together, our results demonstrate that severely degraded acuity and contrast sensitivity may increase people’s tendency to overestimate perception of distance traveled, perhaps because of an increased perception of speed of self-motion.
Voetnoten
1
These results contrast with on-average accurate dynamic updating of distance when walking without vision after static viewing—often referred to as blind walking (Loomis, Silva, Fujita, & Fukusima, 1992; Rieser, Ashmead, Taylor, & Youngquist, 1990)—which may be due to the typically shorter distances used, or the nature of the explicit visually-directed walking task to a known target.
 
2
Here, the overestimation in blur occurred only after estimates were made with normal vision. It could be that those who walked with blur first learned that visual information was unreliable and weighted body-based cues for distance traveled more heavily, leading to more accurate judgments. This effect is consistent with the general finding that distance estimates after walking without vision are more accurate than when vision is added (e.g., Sun, Campos, Young, Chan, & Ellard, 2004).
 
Literatuur
go back to reference Barhorst-Cates, E. M., Rand, K. M., & Creem-Regehr, S. H. (2017). Let me be your guide: physical guidance improves spatial learning for older adults with simulated low vision. Experimental Brain Research, 235(11), 3307–3317.CrossRefPubMed Barhorst-Cates, E. M., Rand, K. M., & Creem-Regehr, S. H. (2017). Let me be your guide: physical guidance improves spatial learning for older adults with simulated low vision. Experimental Brain Research, 235(11), 3307–3317.CrossRefPubMed
go back to reference Bochsler, T. M., Legge, G. E., Gage, R., & Kallie, C. S. (2013). Recognition of ramps and steps by people with low vision. Investigative Ophthalmology & Visual Science, 54(1), 288–294.CrossRef Bochsler, T. M., Legge, G. E., Gage, R., & Kallie, C. S. (2013). Recognition of ramps and steps by people with low vision. Investigative Ophthalmology & Visual Science, 54(1), 288–294.CrossRef
go back to reference Bremmer, F., & Lappe, M. (1999). The use of optical velocities for distance discrimination and reproduction during visually simulated self motion. Experimental Brain Research, 127, 33–42.CrossRefPubMed Bremmer, F., & Lappe, M. (1999). The use of optical velocities for distance discrimination and reproduction during visually simulated self motion. Experimental Brain Research, 127, 33–42.CrossRefPubMed
go back to reference Campos, J. L., Butler, B. C., & Bülthoff, H. H. (2012). Multisensory integration in the estimation of walked distances. Experimental Brain Research, 218(4), 551–565.CrossRefPubMed Campos, J. L., Butler, B. C., & Bülthoff, H. H. (2012). Multisensory integration in the estimation of walked distances. Experimental Brain Research, 218(4), 551–565.CrossRefPubMed
go back to reference Campos, J. L., Byrne, P., & Sun, H. J. (2010). The brain weights body-based cues higher than vision when estimating walked distances. European Journal of Neuroscience, 31(10), 1889–1898.CrossRefPubMed Campos, J. L., Byrne, P., & Sun, H. J. (2010). The brain weights body-based cues higher than vision when estimating walked distances. European Journal of Neuroscience, 31(10), 1889–1898.CrossRefPubMed
go back to reference Frenz, H., Bremmer, F., & Lappe, M. (2003). Discrimination of travel distances from `situated’ optic flow. Vision Research, 43, 2173–2183.CrossRefPubMed Frenz, H., Bremmer, F., & Lappe, M. (2003). Discrimination of travel distances from `situated’ optic flow. Vision Research, 43, 2173–2183.CrossRefPubMed
go back to reference Frenz, H., & Lappe, M. (2005). Absolute travel distance from optic flow. Vision Research, 45, 1679–1692.CrossRefPubMed Frenz, H., & Lappe, M. (2005). Absolute travel distance from optic flow. Vision Research, 45, 1679–1692.CrossRefPubMed
go back to reference Frenz, H., Lappe, M., Kolesnik, M., & Bülhrmann, T. (2007). Estimation of travel distance from visual motion in virtual environments. ACM Transactions on Applied Perception, 4(1), 1–18.CrossRef Frenz, H., Lappe, M., Kolesnik, M., & Bülhrmann, T. (2007). Estimation of travel distance from visual motion in virtual environments. ACM Transactions on Applied Perception, 4(1), 1–18.CrossRef
go back to reference Gibson, J. J. (1950). The perception of visual surfaces. American Journal of Psychology, 63, 367–384.CrossRefPubMed Gibson, J. J. (1950). The perception of visual surfaces. American Journal of Psychology, 63, 367–384.CrossRefPubMed
go back to reference Glasauer, S., Schneider, E., Grasso, R., & Ivanenko, aY. P. (2007). Space-time relativity in self-motion reproduction. Journal of Neurophysiology, 97, 451–461.CrossRefPubMed Glasauer, S., Schneider, E., Grasso, R., & Ivanenko, aY. P. (2007). Space-time relativity in self-motion reproduction. Journal of Neurophysiology, 97, 451–461.CrossRefPubMed
go back to reference Glasauer, S., Stein, A., Günther, A. L., Flanagin, V. L., Jahn, K., & Brandt, T. (2009). The effect of dual tasks in locomotor path integration. Annals of the New York Academy of Sciences, 1164(1), 201–205.CrossRefPubMed Glasauer, S., Stein, A., Günther, A. L., Flanagin, V. L., Jahn, K., & Brandt, T. (2009). The effect of dual tasks in locomotor path integration. Annals of the New York Academy of Sciences, 1164(1), 201–205.CrossRefPubMed
go back to reference Harris, L. R., Herpers, R., Jenkin, M., Allison, R. S., Jenkin, H., Kapralos, B., Felsner, S. (2012). The relative contributions of radial and laminar optic flow to the perception of linear self-motion Harris et al. Journal of Vision, 12(10), 7–7.CrossRefPubMed Harris, L. R., Herpers, R., Jenkin, M., Allison, R. S., Jenkin, H., Kapralos, B., Felsner, S. (2012). The relative contributions of radial and laminar optic flow to the perception of linear self-motion Harris et al. Journal of Vision, 12(10), 7–7.CrossRefPubMed
go back to reference Kalia, A. A., Schrater, P. R., & Legge, G. E. (2013). Combining path integration and remembered landmarks when navigating without vision. PLoS ONE, 8(9), e72170. Kalia, A. A., Schrater, P. R., & Legge, G. E. (2013). Combining path integration and remembered landmarks when navigating without vision. PLoS ONE, 8(9), e72170.
go back to reference Kuyk, T., & Elliott, J. L. (1999). Visual factors and mobility in persons with age-related macular degeneration. Journal of Rehabilitation Research and Development, 36(4), 303–312.PubMed Kuyk, T., & Elliott, J. L. (1999). Visual factors and mobility in persons with age-related macular degeneration. Journal of Rehabilitation Research and Development, 36(4), 303–312.PubMed
go back to reference Lappe, M., Jenkin, M., & Harris, L. R. (2007). Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research, 180(1), 35–48.CrossRefPubMed Lappe, M., Jenkin, M., & Harris, L. R. (2007). Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research, 180(1), 35–48.CrossRefPubMed
go back to reference Lappin, J. S., Shelton, A. L., & Rieser, J. J. (2006). Environmental context influences visually perceived distance. Perception & Psychophysics, 68(4), 571–581.CrossRef Lappin, J. S., Shelton, A. L., & Rieser, J. J. (2006). Environmental context influences visually perceived distance. Perception & Psychophysics, 68(4), 571–581.CrossRef
go back to reference Larish, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 295.PubMed Larish, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 295.PubMed
go back to reference Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5, 437–459.CrossRefPubMed Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5, 437–459.CrossRefPubMed
go back to reference Loomis, J. M., Silva, J. A. D., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906–921.PubMed Loomis, J. M., Silva, J. A. D., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906–921.PubMed
go back to reference Magel, S. G., & Sadalla, E. K. (1980). The perception of traversed distance. Environment and Behavior, 12(1), 65–79.CrossRef Magel, S. G., & Sadalla, E. K. (1980). The perception of traversed distance. Environment and Behavior, 12(1), 65–79.CrossRef
go back to reference Mittelstaedt, M.-L., & Mittelstaedt, H. (2001). Idiothetic navigation in humans: estimation of path length. Experimental Brain Research, 139(3), 318–332.CrossRefPubMed Mittelstaedt, M.-L., & Mittelstaedt, H. (2001). Idiothetic navigation in humans: estimation of path length. Experimental Brain Research, 139(3), 318–332.CrossRefPubMed
go back to reference Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L. Jr., & Warren, W. H. (2007). Visual flow influences gain transition speed and preferred walking speed. Experimental Brain Research, 181(2), 221–228.CrossRefPubMed Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L. Jr., & Warren, W. H. (2007). Visual flow influences gain transition speed and preferred walking speed. Experimental Brain Research, 181(2), 221–228.CrossRefPubMed
go back to reference Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Willemsen, P., Pick, H. L. Jr., & Rieser, J. J. (2007). Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Transactions on Applied Perception, 4(1), 1–15.CrossRef Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Willemsen, P., Pick, H. L. Jr., & Rieser, J. J. (2007). Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Transactions on Applied Perception, 4(1), 1–15.CrossRef
go back to reference Pelli, D. G. (1987). The visual requirements of mobility. Low vision: principles and applications, (pp. 134–146). Pelli, D. G. (1987). The visual requirements of mobility. Low vision: principles and applications, (pp. 134–146).
go back to reference Pretto, P., & Chatziastros, A. (2006). Changes in optic flow and scene contrast affect the driving speed Driving Simulation Conference Europe, (pp. 263–272). Pretto, P., & Chatziastros, A. (2006). Changes in optic flow and scene contrast affect the driving speed Driving Simulation Conference Europe, (pp. 263–272).
go back to reference Rand, K. M., Barhorst-Cates, E. M., & Creem-Regehr, S. H. (2016). Overestimation of distance traveled with degraded vision: Evidence from walking and wheeling. Poster presented at Spatial Cognition 2016, Philadelphia. Rand, K. M., Barhorst-Cates, E. M., & Creem-Regehr, S. H. (2016). Overestimation of distance traveled with degraded vision: Evidence from walking and wheeling. Poster presented at Spatial Cognition 2016, Philadelphia.
go back to reference Rand, K. M., Creem-Regehr, S. H., & Thompson, W. B. (2015). Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring. Journal of Experimental Psychology: Human Perception & Performance, 41(3), 649–664. Rand, K. M., Creem-Regehr, S. H., & Thompson, W. B. (2015). Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring. Journal of Experimental Psychology: Human Perception & Performance, 41(3), 649–664.
go back to reference Rand, K. M., Tarampi, M. R., Creem-Regehr, S. H., & Thompson, W. B. (2011). The importance of a visual horizon for distance judgments under severely degraded vision. Perception, 40, 143–154.CrossRefPubMedPubMedCentral Rand, K. M., Tarampi, M. R., Creem-Regehr, S. H., & Thompson, W. B. (2011). The importance of a visual horizon for distance judgments under severely degraded vision. Perception, 40, 143–154.CrossRefPubMedPubMedCentral
go back to reference Rand, K. M., Tarampi, M. R., Creem-Regehr, S. H., & Thompson, W. B. (2012). The influence of ground contact and visible horizon on perception of distance and size under severely degraded vision. Seeing and perceiving, 25(5), 425–447.CrossRefPubMedPubMedCentral Rand, K. M., Tarampi, M. R., Creem-Regehr, S. H., & Thompson, W. B. (2012). The influence of ground contact and visible horizon on perception of distance and size under severely degraded vision. Seeing and perceiving, 25(5), 425–447.CrossRefPubMedPubMedCentral
go back to reference Redlick, F. P., Jenkin, M., & Harris, L. R. (2001). Humans can use optic flow to estimate distance of travel. Vision Research, 41, 213–219.CrossRefPubMed Redlick, F. P., Jenkin, M., & Harris, L. R. (2001). Humans can use optic flow to estimate distance of travel. Vision Research, 41, 213–219.CrossRefPubMed
go back to reference Rieser, J. J., Ashmead, D. H., Taylor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675–689.CrossRefPubMed Rieser, J. J., Ashmead, D. H., Taylor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675–689.CrossRefPubMed
go back to reference Sargent, J. Q., Zacks, J. M., Philbeck, J. W., & Flores, S. (2013). Distraction shrinks space. Memory & Cognition, 41(5), 769–780.CrossRef Sargent, J. Q., Zacks, J. M., Philbeck, J. W., & Flores, S. (2013). Distraction shrinks space. Memory & Cognition, 41(5), 769–780.CrossRef
go back to reference Snowden, R. J., Stimpson, N., & Ruddle, R. A. (1998). Speed perception fogs up as visibility drops. Nature, 392(6675), 450.CrossRefPubMed Snowden, R. J., Stimpson, N., & Ruddle, R. A. (1998). Speed perception fogs up as visibility drops. Nature, 392(6675), 450.CrossRefPubMed
go back to reference Stone, L. S., & Thompson, P. (1992). Human speed perception is contrast dependent. Vision Research, 12(8), 1535–1549.CrossRef Stone, L. S., & Thompson, P. (1992). Human speed perception is contrast dependent. Vision Research, 12(8), 1535–1549.CrossRef
go back to reference Sun, H.-J., Campos, J. L., & Chan, G. S. W. (2004). Multisensory integration in the estimation of relative path length. Experimental Brain Research, 154, 246–254.CrossRefPubMed Sun, H.-J., Campos, J. L., & Chan, G. S. W. (2004). Multisensory integration in the estimation of relative path length. Experimental Brain Research, 154, 246–254.CrossRefPubMed
go back to reference Sun, H.-J., Campos, J. L., Young, M., Chan, G. S. W., & Ellard, C. G. (2004). The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation. Perception, 33, 49–65.CrossRefPubMed Sun, H.-J., Campos, J. L., Young, M., Chan, G. S. W., & Ellard, C. G. (2004). The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation. Perception, 33, 49–65.CrossRefPubMed
go back to reference Sun, H.-J., Lee, A., Campos, J. L., Chan, G. S. W., & Zhang, D. H. (2003). Multisensory integration in speed estimation during self-motion in a virtual environment. CyberPsychology and Behaviour, 6(5), 509–518.CrossRef Sun, H.-J., Lee, A., Campos, J. L., Chan, G. S. W., & Zhang, D. H. (2003). Multisensory integration in speed estimation during self-motion in a virtual environment. CyberPsychology and Behaviour, 6(5), 509–518.CrossRef
go back to reference Tarampi, M. R., Creem-Regehr, S. H., & Thompson, W. B. (2010). Intact spatial updating with severely degraded vision. Attention, Perception, & Psychophysics, 72(1), 23–27.CrossRef Tarampi, M. R., Creem-Regehr, S. H., & Thompson, W. B. (2010). Intact spatial updating with severely degraded vision. Attention, Perception, & Psychophysics, 72(1), 23–27.CrossRef
go back to reference Thompson, W. B., Legge, G. E., Kersten, D. J., Shakespeare, R. A., & Lei, Q. (2017). Simulating visibility under reduced acuity and contrast sensitivity. Journal of the Optical Society of America A. Optics and Image Science, 34(4), 583–593.CrossRef Thompson, W. B., Legge, G. E., Kersten, D. J., Shakespeare, R. A., & Lei, Q. (2017). Simulating visibility under reduced acuity and contrast sensitivity. Journal of the Optical Society of America A. Optics and Image Science, 34(4), 583–593.CrossRef
go back to reference Turano, K. A., Broman, A. T., Bandeen-Roche, K., Munoz, B., Rubin, G. S., & West, S. K. (2004). Association of visual field loss and mobility performance in older adults: Salisbury Eye Evaluation Study. Optometry & Vision Science, 81(5), 298–307.CrossRef Turano, K. A., Broman, A. T., Bandeen-Roche, K., Munoz, B., Rubin, G. S., & West, S. K. (2004). Association of visual field loss and mobility performance in older adults: Salisbury Eye Evaluation Study. Optometry & Vision Science, 81(5), 298–307.CrossRef
go back to reference Warren, W. H., & Hannon, D. J. (1988). Direction of self-motion is perceived from optical flow. Nature, 336, 162–163.CrossRef Warren, W. H., & Hannon, D. J. (1988). Direction of self-motion is perceived from optical flow. Nature, 336, 162–163.CrossRef
go back to reference Witt, J. K., Stefanucci, J. K., Riener, C. R., & Proffitt, D. R. (2007). Seeing beyond the target: Environmental context affects distance perception. Perception, 36, 1752–1768.CrossRefPubMed Witt, J. K., Stefanucci, J. K., Riener, C. R., & Proffitt, D. R. (2007). Seeing beyond the target: Environmental context affects distance perception. Perception, 36, 1752–1768.CrossRefPubMed
Metagegevens
Titel
Going the distance and beyond: simulated low vision increases perception of distance traveled during locomotion
Auteurs
Kristina M. Rand
Erica M. Barhorst-Cates
Eren Kiris
William B. Thompson
Sarah H. Creem-Regehr
Publicatiedatum
21-04-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 7/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-1019-2

Andere artikelen Uitgave 7/2019

Psychological Research 7/2019 Naar de uitgave