Skip to main content
Top

2019 | OriginalPaper | Hoofdstuk

3. Glycolyse

Auteur : Prof. dr. F.C. Schuit

Gepubliceerd in: Leerboek metabolisme en voeding

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Hoofdstuk 3 bespreekt de glycolyse, de splitsing van glucose in twee moleculen pyruvaat. Deze weg wordt voorafgegaan door opname van glucose via glucosetransporters: eiwitkanaaltjes in de celmembraan. De glycolyse verloopt in tien, door specifieke enzymen gekatalyseerde, reacties die in drie fasen kunnen worden onderverdeeld. Tijdens de eerste fase worden twee ATP geïnvesteerd en ontstaat uit glucose het fructose-1,6-bisfosfaat. In de tweede fase wordt fructose-1,6-bisfosfaat omgezet in twee glyceraldehyde-3-fosfaat, die in de derde fase worden gemetaboliseerd tot twee moleculen pyruvaat (nettowinst 2ATP). Pyruvaat kan in de mitochondria verder worden geoxideerd tot CO2, maar bij een cellulair gebrek aan zuurstof wordt pyruvaat gereduceerd tot lactaat (anaerobe glycolyse). Een afgeleide van de glycolyse, het 2,3-bisfosfoglyceraat, regelt de zuurstofafgifte door rode bloedcellen aan de weefsels. De glycolyse is niet alleen katabool, maar sluit ook aan op anabole paden, zoals de pentosefosfaatweg en de vetzuursynthese. Regeling van de glycolytische flux gebeurt via fructose-2,6-bisfosfaat, dat fosfofructokinase-1 activeert.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Badet, C. & Thebaud, N.B. (2008). Ecology of lactobacilli in the oral cavity: a review of literature. Open. Microbiol. J. 2, 38–48. Badet, C. & Thebaud, N.B. (2008). Ecology of lactobacilli in the oral cavity: a review of literature. Open. Microbiol. J. 2, 38–48.
go back to reference Beja-Pereira, A., Luikart, G., England, P.R., Bradley, D.G., Jann, O.C., Bertorelle, G., et al. (2003). Gene-culture coevolution between cattle milk protein genes & human lactase genes. Nat. Genet. 35, 311–313. Beja-Pereira, A., Luikart, G., England, P.R., Bradley, D.G., Jann, O.C., Bertorelle, G., et al. (2003). Gene-culture coevolution between cattle milk protein genes & human lactase genes. Nat. Genet. 35, 311–313.
go back to reference Berry, G.T. (2012). Galactosemia: when is it a newborn screening emergency? Mol Genet Metab. 106, 7–11.CrossRef Berry, G.T. (2012). Galactosemia: when is it a newborn screening emergency? Mol Genet Metab. 106, 7–11.CrossRef
go back to reference Bouteldja, N. & Timson, D.J. (2010). The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis. 33, 105–112. Bouteldja, N. & Timson, D.J. (2010). The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis. 33, 105–112.
go back to reference De Vos, A., Heimberg, H., Quartier, E., Huypens, P., Bouwens, L., Pipeleers, D. et al. (1995). Human & rat bèta-cells differ in glucose transporter but not in glucokinase gene expression. J Clin. Invest. 96, 2489–2495. De Vos, A., Heimberg, H., Quartier, E., Huypens, P., Bouwens, L., Pipeleers, D. et al. (1995). Human & rat bèta-cells differ in glucose transporter but not in glucokinase gene expression. J Clin. Invest. 96, 2489–2495.
go back to reference DeBerardinis, R.J. (2008). Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet. Med. 10, 767–777.CrossRef DeBerardinis, R.J. (2008). Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet. Med. 10, 767–777.CrossRef
go back to reference Donohue, T.M., Jr. (2007). Alcohol-induced steatosis in liver cells. World J. Gastroenterol. 13, 4974–4978. Donohue, T.M., Jr. (2007). Alcohol-induced steatosis in liver cells. World J. Gastroenterol. 13, 4974–4978.
go back to reference Ishiki, M. & Klip, A. (2005). Minireview: Recent developments in the regulation of glucose transporter-4 traffic: New signals, locations, & partners. Endocrinology 146, 5071–5078. Ishiki, M. & Klip, A. (2005). Minireview: Recent developments in the regulation of glucose transporter-4 traffic: New signals, locations, & partners. Endocrinology 146, 5071–5078.
go back to reference Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R. & Webb, W.W. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103. Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R. & Webb, W.W. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103.
go back to reference Lieber, C.S. (2003). Relationships between nutrition, alcohol use, & liver disease. Alcohol Res. Health. 27, 220–231. Lieber, C.S. (2003). Relationships between nutrition, alcohol use, & liver disease. Alcohol Res. Health. 27, 220–231.
go back to reference Matsuzaki, T., Takagi, A., Ikemura, H., Matsuguchi, T. & Yokokura, T. (2007). Intestinal microflora: probiotics & autoimmunity. J. Nutr. 137, 798S–802S. Matsuzaki, T., Takagi, A., Ikemura, H., Matsuguchi, T. & Yokokura, T. (2007). Intestinal microflora: probiotics & autoimmunity. J. Nutr. 137, 798S–802S.
go back to reference Molina, P.E. & Nelson S (2018). Binge Drinking’s Effects on the Body. Alcohol Res. 39, 99–109. Molina, P.E. & Nelson S (2018). Binge Drinking’s Effects on the Body. Alcohol Res. 39, 99–109.
go back to reference O’Brien, P.J. (2008). Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 245, 206–218.CrossRef O’Brien, P.J. (2008). Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 245, 206–218.CrossRef
go back to reference Osna,N.A., Donohue, T.M. Jr & Kharbanda, K.K. (2017). Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol Res. 38, 147–161. Osna,N.A., Donohue, T.M. Jr & Kharbanda, K.K. (2017). Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol Res. 38, 147–161.
go back to reference Pares, X., Farres, J., Kedishvili, N. & Duester, G. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: Medium-chain & short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol. Life Sci. 65, 3936–3949. Pares, X., Farres, J., Kedishvili, N. & Duester, G. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: Medium-chain & short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol. Life Sci. 65, 3936–3949.
go back to reference Patel, A.B., Lai, J.C., Chowdhury, G.M., Hyder, F., Rothman, D.L., Shulman, R.G. & Behar, K.L. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA. 111, 5385–5390. Patel, A.B., Lai, J.C., Chowdhury, G.M., Hyder, F., Rothman, D.L., Shulman, R.G. & Behar, K.L. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA. 111, 5385–5390.
go back to reference Peng, G.S. & Yin, S.J. (2009). Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 & alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum. Genomics. 3, 121–127. Peng, G.S. & Yin, S.J. (2009). Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 & alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum. Genomics. 3, 121–127.
go back to reference Persson, B., Hedlund, J. & Jornvall, H. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: the MDR superfamily. Cell Mol. Life Sci. 65, 3879–3894. Persson, B., Hedlund, J. & Jornvall, H. (2008). Medium- & short-chain dehydrogenase/reductase gene & protein families: the MDR superfamily. Cell Mol. Life Sci. 65, 3879–3894.
go back to reference Piskur, J., Rozpedowska, E., Polakova, S., Merico, A. & Compagno, C. (2006). How did Saccharomyces evolve to become a good brewer? Trends Genet. 22, 183–186. Piskur, J., Rozpedowska, E., Polakova, S., Merico, A. & Compagno, C. (2006). How did Saccharomyces evolve to become a good brewer? Trends Genet. 22, 183–186.
go back to reference Ruyter, J.C. de, Olthof M.R., Seidell, J.C. & Katan, M.B. (2012). A trial of sugar-free or sugar-sweetened beverages and body weight in children. N Engl J Med. 367, 1397–1406. Ruyter, J.C. de, Olthof M.R., Seidell, J.C. & Katan, M.B. (2012). A trial of sugar-free or sugar-sweetened beverages and body weight in children. N Engl J Med. 367, 1397–1406.
go back to reference Schuit, F.C., Huypens, P., Heimberg, H. & Pipeleers, D.G. (2001). Glucose sensing in pancreatic bèta-cells - A model for the study of other glucose-regulated cells in gut, pancreas, & hypothalamus. Diabetes 50, 1–11. Schuit, F.C., Huypens, P., Heimberg, H. & Pipeleers, D.G. (2001). Glucose sensing in pancreatic bèta-cells - A model for the study of other glucose-regulated cells in gut, pancreas, & hypothalamus. Diabetes 50, 1–11.
go back to reference Shah, N.P. (2000). Probiotic bacteria: selective enumeration & survival in dairy foods. J. Dairy Sci. 83, 894–907. Shah, N.P. (2000). Probiotic bacteria: selective enumeration & survival in dairy foods. J. Dairy Sci. 83, 894–907.
go back to reference Stanhope, K.L., et al. (2015). A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr. 101, 1144–1154.CrossRef Stanhope, K.L., et al. (2015). A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr. 101, 1144–1154.CrossRef
go back to reference Tappy, L. & Lê, K.A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 90, 23–46. Tappy, L. & Lê, K.A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 90, 23–46.
go back to reference Van Schaftingen, E., Jett, M.F., Hue, L. & Hers, H.G. (1981). Control of liver 6-phosphofructokinase by fructose 2, 6-bisphosphate & other effectors. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78, 3483–3486. Van Schaftingen, E., Jett, M.F., Hue, L. & Hers, H.G. (1981). Control of liver 6-phosphofructokinase by fructose 2, 6-bisphosphate & other effectors. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78, 3483–3486.
go back to reference Wang, J.C., Kapoor, M. & Goate, A.M. (2012). The genetics of substance dependence. Annu. Rev. Genomics Hum. Genet. 13, 241–261. Wang, J.C., Kapoor, M. & Goate, A.M. (2012). The genetics of substance dependence. Annu. Rev. Genomics Hum. Genet. 13, 241–261.
go back to reference Wenger, R.H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, & O2-regulated gene expression. FASEB J 16, 1151–1162. Wenger, R.H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, & O2-regulated gene expression. FASEB J 16, 1151–1162.
go back to reference Yang, H. & Kaelin, W.G., Jr. (2001). Molecular pathogenesis of the von Hippel-Lindau hereditary cancer syndrome: implications for oxygen sensing. Cell Growth Differ. 12, 447–455. Yang, H. & Kaelin, W.G., Jr. (2001). Molecular pathogenesis of the von Hippel-Lindau hereditary cancer syndrome: implications for oxygen sensing. Cell Growth Differ. 12, 447–455.
go back to reference Yin, S.J. (1994). Alcohol dehydrogenase: enzymology & metabolism. Alcohol Alcohol Suppl. 2, 113–119. Yin, S.J. (1994). Alcohol dehydrogenase: enzymology & metabolism. Alcohol Alcohol Suppl. 2, 113–119.
go back to reference Zahr, N.M. & Pfefferbaum A (2017). Alcohol’s Effects on the Brain: Neuroimaging Results in Humans and Animal Models. Alcohol Res. 38, 183–206. Zahr, N.M. & Pfefferbaum A (2017). Alcohol’s Effects on the Brain: Neuroimaging Results in Humans and Animal Models. Alcohol Res. 38, 183–206.
Metagegevens
Titel
Glycolyse
Auteur
Prof. dr. F.C. Schuit
Copyright
2019
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2358-6_3