Skip to main content
Top
Gepubliceerd in:

01-10-2008 | Original Paper

Food-related Neural Circuitry in Prader-Willi Syndrome: Response to High- Versus Low-calorie Foods

Auteurs: Anastasia Dimitropoulos, Robert T. Schultz

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 9/2008

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia and food preoccupations. Although dysfunction of the hypothalamus likely has a critical role in hyperphagia, it is only one of several regions involved in the regulation of eating. The purpose of this research was to examine food-related neural circuitry using functional magnetic resonance imaging in individuals with PWS and matched controls. Individuals with PWS showed increased activation in neural circuitry known to mediate hunger and motivation (hypothalamus, OFC) in response to high- versus low-calorie foods and in comparison to controls. This suggests neural circuitry for PWS is abnormally activated during hunger, particularly for high-calorie foods, and may mediate abnormally strong hunger states, therefore playing a significant role in PWS-induced hyperphagia.
Voetnoten
1
This research was approved by the Human Investigations Committee of the Yale University School of Medicine. In order to prepare our participants for the MRI procedure, we conducted a mock scanning session using a replica of the actual MRI scanner, equipped with audio equipment to simulate the MRI noise level.
 
2
Prior to scanning this sample, a pilot study of six healthy-weight adults was conducted to solidify the study design and replicate previous findings with healthy-weight participants. No attempt was made to match the pilot sample to the PWS sample. Pilot data indicated food-related activation in areas consistent with previous research in normal-weight individuals, including the insula, thalamus, FG, and OFC (Dimitropoulos and Schultz 2004).
 
3
In PWS: (1) paroxetine, (2) paroxetine, risperidone, (3) fluoxetine. In MR/DD: (1) escitalopram, topiramate, (2) methylphenidate hydrochloride, (3) risperidone, (4) atomoxetine, zonisamide, sertraline, (5) methylphenidate hydrochloride , (6) divalproex sodium, olanzapine, (7) divalproex sodium, risperidone, (8) bupropion.
 
4
Our first three PWS participants received these stimuli presented over three runs instead of two (Stimulus duration = 3,000 ms, ISI = 1,500 ms) but short response times and high accuracy on the task led us to shorten the protocol to two runs. A direct comparison between data from those who received three runs versus two runs did not reveal any differences in activation level in our primary ROIs (p > .20).
 
Literatuur
go back to reference Anand, B. K., & Brobeck, J. R. (1951). Localization of a feeding center in he hypothalamus of the rat. Proceedings of the Society for Experimental Biology and Medicine, 77, 323–324.PubMed Anand, B. K., & Brobeck, J. R. (1951). Localization of a feeding center in he hypothalamus of the rat. Proceedings of the Society for Experimental Biology and Medicine, 77, 323–324.PubMed
go back to reference Araujo, I. E., & Rolls, E. T. (2004). Representation in the human brain of food texture and oral fat. The Journal of Neuroscience, 24(12), 3086–3093.PubMedCrossRef Araujo, I. E., & Rolls, E. T. (2004). Representation in the human brain of food texture and oral fat. The Journal of Neuroscience, 24(12), 3086–3093.PubMedCrossRef
go back to reference Baylis, L. L., Rolls, E. T., & Baylis, G. C. (1995). Afferent connections of the caudolateral orbitofrontal cortex taste area of the primate. Neuroscience, 64, 801–812.PubMedCrossRef Baylis, L. L., Rolls, E. T., & Baylis, G. C. (1995). Afferent connections of the caudolateral orbitofrontal cortex taste area of the primate. Neuroscience, 64, 801–812.PubMedCrossRef
go back to reference Burton, M. J., Rolls, E. T., & Mora, F. (1976). Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Experimental Neurology, 51, 668–677.PubMedCrossRef Burton, M. J., Rolls, E. T., & Mora, F. (1976). Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Experimental Neurology, 51, 668–677.PubMedCrossRef
go back to reference Cahill, L., Babinsky, R., Markowitsch, H. J., & McCaugh, J. L. (1995). The amygdala and emotional memory. Nature, 377, 295–296.PubMedCrossRef Cahill, L., Babinsky, R., Markowitsch, H. J., & McCaugh, J. L. (1995). The amygdala and emotional memory. Nature, 377, 295–296.PubMedCrossRef
go back to reference Carpenter, M. B. (1985). Core text of neuroanatomy (3rd ed.). Baltimore: Williams & Wilkins. Carpenter, M. B. (1985). Core text of neuroanatomy (3rd ed.). Baltimore: Williams & Wilkins.
go back to reference Clark, J. M., Clark, A. J. M., Bartle, A., & Winn, P. (1991). The regulation of feeding and drinking in rats with lesions of the lateral hypothalamus made by N-methyl-D-aspartate. Neuroscience, 4, 631–640.CrossRef Clark, J. M., Clark, A. J. M., Bartle, A., & Winn, P. (1991). The regulation of feeding and drinking in rats with lesions of the lateral hypothalamus made by N-methyl-D-aspartate. Neuroscience, 4, 631–640.CrossRef
go back to reference Coons, E. E., Levak, M., & Miller, N. E. (1965). Lateral hypothalamus: Learning of food-seeking response motivated by electrical stimulation. Science, 150, 1320–1321.PubMedCrossRef Coons, E. E., Levak, M., & Miller, N. E. (1965). Lateral hypothalamus: Learning of food-seeking response motivated by electrical stimulation. Science, 150, 1320–1321.PubMedCrossRef
go back to reference Critchley, H. D., & Rolls, E. T. (1996). Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. Journal of Neurophysiology, 75, 1673–1686.PubMed Critchley, H. D., & Rolls, E. T. (1996). Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. Journal of Neurophysiology, 75, 1673–1686.PubMed
go back to reference DeFalco, J., Tomishima, M., Liu, H., Zhao, C., Cai, X., Marth, J. D., et al. (2001). Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science, 291, 2608–2613.PubMedCrossRef DeFalco, J., Tomishima, M., Liu, H., Zhao, C., Cai, X., Marth, J. D., et al. (2001). Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science, 291, 2608–2613.PubMedCrossRef
go back to reference Del Parigi, A., Tschop, M., Heiman, M., Salbe, A., Vozarova, B., Sell, S., et al. (2002). High circulating ghrelin: A potential cause for hyperphagia and obesity in PWS. Journal of Clinical Endocrinology & Metabolism, 87(12), 5461–5464.CrossRef Del Parigi, A., Tschop, M., Heiman, M., Salbe, A., Vozarova, B., Sell, S., et al. (2002). High circulating ghrelin: A potential cause for hyperphagia and obesity in PWS. Journal of Clinical Endocrinology & Metabolism, 87(12), 5461–5464.CrossRef
go back to reference Dimitropoulos, A., Feurer, I., Butler, M., & Thompson, T. (2001). Emergence of compulsive behavior and tantrums in children with Prader-Willi syndrome. American Journal on Mental Retardation, 106(1), 39–51.PubMedCrossRef Dimitropoulos, A., Feurer, I., Butler, M., & Thompson, T. (2001). Emergence of compulsive behavior and tantrums in children with Prader-Willi syndrome. American Journal on Mental Retardation, 106(1), 39–51.PubMedCrossRef
go back to reference Dimitropoulos, A., & Schultz, R. (2004, March). Hyperphagia in Prader-Willi syndrome: Using fMRI to explore brain mechanisms in response to food stimuli. Paper presented at the 37th Annual Gatlinburg Conference on Research and Theory in Mental Retardation and Developmental Disabilities, San Diego, California. Dimitropoulos, A., & Schultz, R. (2004, March). Hyperphagia in Prader-Willi syndrome: Using fMRI to explore brain mechanisms in response to food stimuli. Paper presented at the 37th Annual Gatlinburg Conference on Research and Theory in Mental Retardation and Developmental Disabilities, San Diego, California.
go back to reference Doyle, P., Rohner-Jeanrenaud, F., & Jeanrenaud, B. (1993). Local cerebral glucose utilization in brains of lean and genetically obese (fa/fa) rats. American Journal of Physiology, 264(1), E29–E36.PubMed Doyle, P., Rohner-Jeanrenaud, F., & Jeanrenaud, B. (1993). Local cerebral glucose utilization in brains of lean and genetically obese (fa/fa) rats. American Journal of Physiology, 264(1), E29–E36.PubMed
go back to reference Duvernoy, H. M. (1991). The human brain: Structure, three-dimensional sectional anatomy and MRI. New York: Springer-Verlag. Duvernoy, H. M. (1991). The human brain: Structure, three-dimensional sectional anatomy and MRI. New York: Springer-Verlag.
go back to reference Fieldstone, A., Zipf, W. B., Schwartz, H. C., & Berntson, G. G. (1997). Food preferences in Prader-Willi syndrome, normal weight and obese controls. International Journal of Obesity, 21, 1046–1052.PubMedCrossRef Fieldstone, A., Zipf, W. B., Schwartz, H. C., & Berntson, G. G. (1997). Food preferences in Prader-Willi syndrome, normal weight and obese controls. International Journal of Obesity, 21, 1046–1052.PubMedCrossRef
go back to reference Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits areas involved in face recognition. Nature Neuroscience, 3(2), 191–197.PubMedCrossRef Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits areas involved in face recognition. Nature Neuroscience, 3(2), 191–197.PubMedCrossRef
go back to reference Glover, D., Maltzman, I., & Williams, C. (1996). Food preferences among individuals with and without Prader-Willi syndrome. American Journal on Mental Retardation, 101(2), 195–205.PubMed Glover, D., Maltzman, I., & Williams, C. (1996). Food preferences among individuals with and without Prader-Willi syndrome. American Journal on Mental Retardation, 101(2), 195–205.PubMed
go back to reference Grelotti, D. J., Klin, A. J., Gauthier, I., Skudlarski, P., Cohen, D. J., Gore, J. C., et al. (2005). fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia, 43(3), 373–385.PubMedCrossRef Grelotti, D. J., Klin, A. J., Gauthier, I., Skudlarski, P., Cohen, D. J., Gore, J. C., et al. (2005). fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia, 43(3), 373–385.PubMedCrossRef
go back to reference Grossman, S. P. (1975). Role of the hypothalamus in the regulation of food and water intake. Psychological Review, 82(3), 200–224.PubMedCrossRef Grossman, S. P. (1975). Role of the hypothalamus in the regulation of food and water intake. Psychological Review, 82(3), 200–224.PubMedCrossRef
go back to reference Haqq, A., Farooqi, I., O’Rahilly, S., Stadler, D., Rosenfeld, R., Pratt, K., et al. (2003). Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in PWS. Journal of Clinical Endocrinology and Metabolism, 88(1), 174–178.PubMedCrossRef Haqq, A., Farooqi, I., O’Rahilly, S., Stadler, D., Rosenfeld, R., Pratt, K., et al. (2003). Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in PWS. Journal of Clinical Endocrinology and Metabolism, 88(1), 174–178.PubMedCrossRef
go back to reference Hinton E. C., Holland A. J., Gellatly M. S., Soni S., & Owen A. M. (2006a). An investigation into food preferences and the neural basis of food-related incentive motivation in Prader-Willi syndrome. Journal of Intellectual Disability Research, 50(Pt 9), 633–642.PubMedCrossRef Hinton E. C., Holland A. J., Gellatly M. S., Soni S., & Owen A. M. (2006a). An investigation into food preferences and the neural basis of food-related incentive motivation in Prader-Willi syndrome. Journal of Intellectual Disability Research, 50(Pt 9), 633–642.PubMedCrossRef
go back to reference Hinton E. C., Holland A. J., Gellatly M. S., Soni S., Patterson M., Ghatei M. A., & Owen A. M. (2006b). Neural representations of hunger and satiety in Prader-Willi syndrome. International Journal of Obesity, 30(2), 313–321.PubMedCrossRef Hinton E. C., Holland A. J., Gellatly M. S., Soni S., Patterson M., Ghatei M. A., & Owen A. M. (2006b). Neural representations of hunger and satiety in Prader-Willi syndrome. International Journal of Obesity, 30(2), 313–321.PubMedCrossRef
go back to reference Holland, A. J. (1998). Understanding the eating disorder affecting people with Prader-Willi syndrome. Journal of Applied Research in Intellectual Disabilities, 11(3), 192–206.CrossRef Holland, A. J. (1998). Understanding the eating disorder affecting people with Prader-Willi syndrome. Journal of Applied Research in Intellectual Disabilities, 11(3), 192–206.CrossRef
go back to reference Holland, A., Whittington, J., & Hinton, E. (2003). The paradox of Prader-Willi syndrome: a genetic model of starvation. The Lancet, 362, 989–991.CrossRef Holland, A., Whittington, J., & Hinton, E. (2003). The paradox of Prader-Willi syndrome: a genetic model of starvation. The Lancet, 362, 989–991.CrossRef
go back to reference Holm, V. A., Cassidy, S. B., Butler, M. G., Hanchett, J. M., Greenswag, L. R., Whitman, B. Y., et al. (1993). Prader-Willi syndrome: Consensus Diagnostic Criteria. Pediatrics, 91, 398–402.PubMed Holm, V. A., Cassidy, S. B., Butler, M. G., Hanchett, J. M., Greenswag, L. R., Whitman, B. Y., et al. (1993). Prader-Willi syndrome: Consensus Diagnostic Criteria. Pediatrics, 91, 398–402.PubMed
go back to reference Holsen L. M., Zarcone J. R., Brooks W. M., Butler M. G., Thompson T. I., Ahluwalia J. S., Nollen N. L., & Savage C. R. (2006). Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity, 14(6), 1028–1037.PubMedCrossRef Holsen L. M., Zarcone J. R., Brooks W. M., Butler M. G., Thompson T. I., Ahluwalia J. S., Nollen N. L., & Savage C. R. (2006). Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity, 14(6), 1028–1037.PubMedCrossRef
go back to reference Joseph, B., Egli, M., Koppekin, A., & Thompson, T. (2002). Food choice in people with Prader-Willi syndrome: Quantity and relative preference. American Journal on Mental Retardation, 107(2), 128–135.PubMedCrossRef Joseph, B., Egli, M., Koppekin, A., & Thompson, T. (2002). Food choice in people with Prader-Willi syndrome: Quantity and relative preference. American Journal on Mental Retardation, 107(2), 128–135.PubMedCrossRef
go back to reference Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.PubMed Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.PubMed
go back to reference Killgore, W. D. S., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage, 1381–1394. Killgore, W. D. S., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage, 1381–1394.
go back to reference Kringelbach, M. L., Doherty, J. O., Rolls, E. T., & Andrews, C. (2003). Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebral Cortex, 13, 1064–1071.PubMedCrossRef Kringelbach, M. L., Doherty, J. O., Rolls, E. T., & Andrews, C. (2003). Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebral Cortex, 13, 1064–1071.PubMedCrossRef
go back to reference LaBar, K. S., Gitelman, D. R., Parrish, T. B., Kim, Y., Nobre, A. C., Mesulam, M. (2001). Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behavioral Neuroscience, 115(2), 493–500.PubMedCrossRef LaBar, K. S., Gitelman, D. R., Parrish, T. B., Kim, Y., Nobre, A. C., Mesulam, M. (2001). Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behavioral Neuroscience, 115(2), 493–500.PubMedCrossRef
go back to reference Ledbetter, D. H., Riccardi, V. M., Youngbloom, S. A., Strobel, R. J., Keenan, B. S., Crawford, J. D., & Louro, J. M. (1980). Deletion (15q) as a cause of the Prader-Willi syndrome (PWS). American Journal of Human Genetics, 32, 77A. Ledbetter, D. H., Riccardi, V. M., Youngbloom, S. A., Strobel, R. J., Keenan, B. S., Crawford, J. D., & Louro, J. M. (1980). Deletion (15q) as a cause of the Prader-Willi syndrome (PWS). American Journal of Human Genetics, 32, 77A.
go back to reference Martin, A., State, M., Anderson, G. M., Kaye, W. M., Hanchett, J. M., McConahay, C. W., et al. (1998). Cerebrospinal fluid levels of oxytocin in Prader-Willi syndrome: A preliminary report. Biological Psychiatry, 44, 1349–1352.PubMedCrossRef Martin, A., State, M., Anderson, G. M., Kaye, W. M., Hanchett, J. M., McConahay, C. W., et al. (1998). Cerebrospinal fluid levels of oxytocin in Prader-Willi syndrome: A preliminary report. Biological Psychiatry, 44, 1349–1352.PubMedCrossRef
go back to reference Miller, L., Angula, M., Price, D., & Taneja, S. (1996). MR of the pituitary in patients with Prader-Willi syndrome: size determination and imaging findings. Pediatric Radiology, 26, 43–47.PubMedCrossRef Miller, L., Angula, M., Price, D., & Taneja, S. (1996). MR of the pituitary in patients with Prader-Willi syndrome: size determination and imaging findings. Pediatric Radiology, 26, 43–47.PubMedCrossRef
go back to reference Mora, F., Rolls, E. T., & Burton, M. J. (1976). Modulation during learning of the responses of neurons in the hypothalamus to the sight of food. Experimental Neurology, 53, 508–519.PubMedCrossRef Mora, F., Rolls, E. T., & Burton, M. J. (1976). Modulation during learning of the responses of neurons in the hypothalamus to the sight of food. Experimental Neurology, 53, 508–519.PubMedCrossRef
go back to reference Morris, J. S., Friston, K. J., Buchel, C., Frith, C. D., Young, A. W., Calder, A. J., Dolan, R.J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121, 47–57.PubMedCrossRef Morris, J. S., Friston, K. J., Buchel, C., Frith, C. D., Young, A. W., Calder, A. J., Dolan, R.J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121, 47–57.PubMedCrossRef
go back to reference Nicholls, R. D., Knoll, J. H. M., Butler, M. G., Karam, S., & Lalande, M. (1989). Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature, 342, 281–285.PubMedCrossRef Nicholls, R. D., Knoll, J. H. M., Butler, M. G., Karam, S., & Lalande, M. (1989). Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature, 342, 281–285.PubMedCrossRef
go back to reference Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys, and humans. Cerebral Cortex, 10, 206–219.PubMedCrossRef Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys, and humans. Cerebral Cortex, 10, 206–219.PubMedCrossRef
go back to reference Oomura, Y. (1973). Central mechanism of feeding. Advances in Biophysics, 5, 65–142.PubMed Oomura, Y. (1973). Central mechanism of feeding. Advances in Biophysics, 5, 65–142.PubMed
go back to reference Pritchard, T. C., Macaluso, D. A., & Eslinger, P. J. (1999). Taste perception in patients with insular cortex lesions. Behavior Neuroscience, 113(4), 663–71.CrossRef Pritchard, T. C., Macaluso, D. A., & Eslinger, P. J. (1999). Taste perception in patients with insular cortex lesions. Behavior Neuroscience, 113(4), 663–71.CrossRef
go back to reference Reilly, S. (1998). The role of the gustatory thalamus in taste-guided behavior. Neuroscience and Biobehavioral Reviews, 22(6), 883–901.PubMedCrossRef Reilly, S. (1998). The role of the gustatory thalamus in taste-guided behavior. Neuroscience and Biobehavioral Reviews, 22(6), 883–901.PubMedCrossRef
go back to reference Rolls, E. T. (1999). The brain and emotion. New York: Oxford University Press. Rolls, E. T. (1999). The brain and emotion. New York: Oxford University Press.
go back to reference Rolls, E. T., Sienkiewicz, Z. J., & Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. European Journal of Neuroscience, 1, 53–60.PubMedCrossRef Rolls, E. T., Sienkiewicz, Z. J., & Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. European Journal of Neuroscience, 1, 53–60.PubMedCrossRef
go back to reference Schneider, F., Grodd, W., Weiss, U., Klose, U., Mayer, K. R., Nagele, T., et al. (1997). Functional MRI reveals left amygdala activation during emotion. Psychiatry Research: Neuroimaging, 76, 75–82.PubMedCrossRef Schneider, F., Grodd, W., Weiss, U., Klose, U., Mayer, K. R., Nagele, T., et al. (1997). Functional MRI reveals left amygdala activation during emotion. Psychiatry Research: Neuroimaging, 76, 75–82.PubMedCrossRef
go back to reference Shapira, N. A., Lessig, M. C., He, A. G., James, G. A., Driscoll, D. J., Liu, Y. (2005). Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 260–262.PubMedCrossRef Shapira, N. A., Lessig, M. C., He, A. G., James, G. A., Driscoll, D. J., Liu, Y. (2005). Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 260–262.PubMedCrossRef
go back to reference Simmons, W. K., Martin, A., & Barsalou, L. W. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15(10), 1602–1608.PubMedCrossRef Simmons, W. K., Martin, A., & Barsalou, L. W. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15(10), 1602–1608.PubMedCrossRef
go back to reference Swaab, D. F., Purba, J. S., & Hofman, M. A. (1995). Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: A study of five cases. Journal of Clinical Endocrinology and Metabolism, 80, 573–579.PubMedCrossRef Swaab, D. F., Purba, J. S., & Hofman, M. A. (1995). Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: A study of five cases. Journal of Clinical Endocrinology and Metabolism, 80, 573–579.PubMedCrossRef
go back to reference Talairach, J., & Tournoux, P. (1988). Co-planar steriotaxic atlas of the human brain. New York: Thieme. Talairach, J., & Tournoux, P. (1988). Co-planar steriotaxic atlas of the human brain. New York: Thieme.
go back to reference Tataranni, P. A., Gautier, J., Chen, K., Uecker, A., Bandy, D., Salbe, A. D., et al. (1999). Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proceedings of the National Academy of Sciences, 96, 4569–4574.CrossRef Tataranni, P. A., Gautier, J., Chen, K., Uecker, A., Bandy, D., Salbe, A. D., et al. (1999). Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proceedings of the National Academy of Sciences, 96, 4569–4574.CrossRef
go back to reference Taylor, R. L., & Caldwell, M. L. (1985). Type and strength of food preference of individuals with Prader-Willi syndrome. Journal of Mental Deficiency Research, 29, 109–112.PubMed Taylor, R. L., & Caldwell, M. L. (1985). Type and strength of food preference of individuals with Prader-Willi syndrome. Journal of Mental Deficiency Research, 29, 109–112.PubMed
go back to reference Thompson, T., Butler, M. G., MacLean, Jr., W. E., Joseph, B., & Delaney, D. (1999). Cognition, behavior, neurochemistry, and genetics in Prader-Willi syndrome. In H. Tager-Flusberg (Ed.), Neurodevelopmental disorders (pp. 155–178). Cambridge: The MIT Press. Thompson, T., Butler, M. G., MacLean, Jr., W. E., Joseph, B., & Delaney, D. (1999). Cognition, behavior, neurochemistry, and genetics in Prader-Willi syndrome. In H. Tager-Flusberg (Ed.), Neurodevelopmental disorders (pp. 155–178). Cambridge: The MIT Press.
go back to reference Vuilleumier, P. (2000). Faces call for attention: Evidence from patients with visual extinction. Neuropsychologia, 38, 693–700.PubMedCrossRef Vuilleumier, P. (2000). Faces call for attention: Evidence from patients with visual extinction. Neuropsychologia, 38, 693–700.PubMedCrossRef
go back to reference Yaxley, S., Rolls, E. T., & Sienkiewicz. (1988). The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiology & Behavior, 42, 223–229. Yaxley, S., Rolls, E. T., & Sienkiewicz. (1988). The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiology & Behavior, 42, 223–229.
go back to reference Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews, 41, 88–123.PubMedCrossRef Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews, 41, 88–123.PubMedCrossRef
Metagegevens
Titel
Food-related Neural Circuitry in Prader-Willi Syndrome: Response to High- Versus Low-calorie Foods
Auteurs
Anastasia Dimitropoulos
Robert T. Schultz
Publicatiedatum
01-10-2008
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 9/2008
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-008-0546-x