Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2012

01-09-2012 | Original Article

Flash-lag effect: complicating motion extrapolation of the moving reference-stimulus paradoxically augments the effect

Auteurs: Talis Bachmann, Carolina Murd, Endel Põder

Gepubliceerd in: Psychological Research | Uitgave 5/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

One fundamental property of the perceptual and cognitive systems is their capacity for prediction in the dynamic environment; the flash-lag effect has been considered as a particularly suggestive example of this capacity (Nijhawan in Nature 370:256–257, 1994, Behav Brain Sci 31:179–239, 2008). Thus, because of involvement of the mechanisms of extrapolation and visual prediction, the moving object is perceived ahead of the simultaneously flashed static object objectively aligned with the moving one. In the present study we introduce a new method and report experimental results inconsistent with at least some versions of the prediction/extrapolation theory. We show that a stimulus moving in the opposite direction to the reference stimulus by approaching it before the flash does not diminish the flash-lag effect, but rather augments it. In addition, alternative theories (in)capable of explaining this paradoxical result are discussed.
Literatuur
go back to reference Alais, D., & Burr, D. (2003). The “flash-lag” effect occurs in audition and cross-modally. Current Biology, 13, 59–63.PubMedCrossRef Alais, D., & Burr, D. (2003). The “flash-lag” effect occurs in audition and cross-modally. Current Biology, 13, 59–63.PubMedCrossRef
go back to reference Ansorge, U., Kiss, M., Worschech, F., & Eimer, M. (2011). The initial stage of visual selection is controlled by top-down task set: new ERP evidence. Attention, Perception, & Psychophysics, 73, 113–122.CrossRef Ansorge, U., Kiss, M., Worschech, F., & Eimer, M. (2011). The initial stage of visual selection is controlled by top-down task set: new ERP evidence. Attention, Perception, & Psychophysics, 73, 113–122.CrossRef
go back to reference Arnold, D. H., Durant, S., & Johnston, A. (2003). Latency differences and the flash-lag effect. Vision Research, 43, 1829–1835.PubMedCrossRef Arnold, D. H., Durant, S., & Johnston, A. (2003). Latency differences and the flash-lag effect. Vision Research, 43, 1829–1835.PubMedCrossRef
go back to reference Bachmann, T. (2010). Priming and retouch in flash-lag and other phenomena of the streaming perceptual input. In R. Nijhawan & B. Khurana, B. (Eds.), Space and time in perception and action (pp. 536–557). Cambridge: Cambridge University Press. Bachmann, T. (2010). Priming and retouch in flash-lag and other phenomena of the streaming perceptual input. In R. Nijhawan & B. Khurana, B. (Eds.), Space and time in perception and action (pp. 536–557). Cambridge: Cambridge University Press.
go back to reference Bachmann, T., Breitmeyer, B. G., & Öğmen, H. (2007). The experimental phenomena of consciousness. A brief dictionary. New York: Oxford University Press. Bachmann, T., Breitmeyer, B. G., & Öğmen, H. (2007). The experimental phenomena of consciousness. A brief dictionary. New York: Oxford University Press.
go back to reference Bachmann, T., Luiga, I., Põder, E., & Kalev, K. (2003). Perceptual acceleration of objects in stream: evidence from flash-lag displays. Consciousness and Cognition, 12, 279–297.PubMedCrossRef Bachmann, T., Luiga, I., Põder, E., & Kalev, K. (2003). Perceptual acceleration of objects in stream: evidence from flash-lag displays. Consciousness and Cognition, 12, 279–297.PubMedCrossRef
go back to reference Bachmann, T., & Põder, E. (2001). Change in feature space is not necessary for the flash-lag effect. Vision Research, 41, 1103–1106.PubMedCrossRef Bachmann, T., & Põder, E. (2001). Change in feature space is not necessary for the flash-lag effect. Vision Research, 41, 1103–1106.PubMedCrossRef
go back to reference Baldo, M. V. C., & Klein, S. A. (2008). Shifting attention to the flash-lag effect. Behavioral and Brain Sciences, 31, 198–199.CrossRef Baldo, M. V. C., & Klein, S. A. (2008). Shifting attention to the flash-lag effect. Behavioral and Brain Sciences, 31, 198–199.CrossRef
go back to reference Becker, S. I., Ansorge, U., & Turatto, M. (2009). Saccades reveal that allocentric coding of the moving object causes mislocation in the flash-lag effect. Attention, Perception, & Psychophysics, 71, 1313–1324.CrossRef Becker, S. I., Ansorge, U., & Turatto, M. (2009). Saccades reveal that allocentric coding of the moving object causes mislocation in the flash-lag effect. Attention, Perception, & Psychophysics, 71, 1313–1324.CrossRef
go back to reference Brenner, E., & Smeets, J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Research, 40, 1645–1648.PubMedCrossRef Brenner, E., & Smeets, J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Research, 40, 1645–1648.PubMedCrossRef
go back to reference Eagleman, D. M. (2008). Prediction and postdiction: Two frameworks with the goal of delay compensation. Behavioral and Brain Sciences, 31, 205–206.CrossRef Eagleman, D. M. (2008). Prediction and postdiction: Two frameworks with the goal of delay compensation. Behavioral and Brain Sciences, 31, 205–206.CrossRef
go back to reference Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science, 287, 2036–2038.PubMedCrossRef Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science, 287, 2036–2038.PubMedCrossRef
go back to reference Enns, J.T., Lleras, A., & Moore, C.M. (2010). Object updating: a force for perceptual continuity and scene stability in human vision. In R. Nijhawan, B. Khurana, (Eds.) Space and time in perception and action (pp. 503–520). Cambridge: Cambridge University Press. Enns, J.T., Lleras, A., & Moore, C.M. (2010). Object updating: a force for perceptual continuity and scene stability in human vision. In R. Nijhawan, B. Khurana, (Eds.) Space and time in perception and action (pp. 503–520). Cambridge: Cambridge University Press.
go back to reference Gauch, A., & Kerzel, D. (2008). Comparison of flashed and moving probes in the flash-lag effect: Evidence for misbinding of abrupt and continuous changes. Vision Research, 48, 1584–1591.PubMedCrossRef Gauch, A., & Kerzel, D. (2008). Comparison of flashed and moving probes in the flash-lag effect: Evidence for misbinding of abrupt and continuous changes. Vision Research, 48, 1584–1591.PubMedCrossRef
go back to reference Gauch, A., & Kerzel, D. (2009). Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion. Vision Research, 49, 2983–2991.PubMedCrossRef Gauch, A., & Kerzel, D. (2009). Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion. Vision Research, 49, 2983–2991.PubMedCrossRef
go back to reference Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978.PubMedCrossRef Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978.PubMedCrossRef
go back to reference Kreegipuu, K., & Allik, J. (2004). Confusion of space and time in the flash-lag effect. Perception, 33, 293–306.PubMedCrossRef Kreegipuu, K., & Allik, J. (2004). Confusion of space and time in the flash-lag effect. Perception, 33, 293–306.PubMedCrossRef
go back to reference Kreegipuu, K., Murd, C., & Allik, J. (2006). Detection of colour changes in a moving object. Vision Research, 46, 1848–1855.PubMedCrossRef Kreegipuu, K., Murd, C., & Allik, J. (2006). Detection of colour changes in a moving object. Vision Research, 46, 1848–1855.PubMedCrossRef
go back to reference Krekelberg, B., & Lappe, M. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Research, 39, 2669–2679.PubMedCrossRef Krekelberg, B., & Lappe, M. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Research, 39, 2669–2679.PubMedCrossRef
go back to reference Maiche, A., Budelli, R., & Gómez-Sena, L. (2007). Spatial facilitation is involved in flash-lag effect. Vision Research, 47, 1655–1661.PubMedCrossRef Maiche, A., Budelli, R., & Gómez-Sena, L. (2007). Spatial facilitation is involved in flash-lag effect. Vision Research, 47, 1655–1661.PubMedCrossRef
go back to reference Mather, G., Verstraten, F., & Anstis, S. (1998). The motion after-effect: a modern perspective. Cambridge: MIT Press. Mather, G., Verstraten, F., & Anstis, S. (1998). The motion after-effect: a modern perspective. Cambridge: MIT Press.
go back to reference Maus, G., & Nijhawan, R. (2009). Going, going, gone: Localizing abrupt offsets of moving objects. Journal of Experimental Psychology: Human Perception and Performance, 35, 611–626.PubMedCrossRef Maus, G., & Nijhawan, R. (2009). Going, going, gone: Localizing abrupt offsets of moving objects. Journal of Experimental Psychology: Human Perception and Performance, 35, 611–626.PubMedCrossRef
go back to reference Moore, C. M., & Enns, J. T. (2004). Object updating and the flash-lag effect. Psychological Science, 15, 866–871.PubMedCrossRef Moore, C. M., & Enns, J. T. (2004). Object updating and the flash-lag effect. Psychological Science, 15, 866–871.PubMedCrossRef
go back to reference Murd, C., Kreegipuu, K., & Allik, J. (2009). Detection of colour change in moving objects: Temporal order judgment and reaction time analysis. Perception, 38, 1649–1662.PubMedCrossRef Murd, C., Kreegipuu, K., & Allik, J. (2009). Detection of colour change in moving objects: Temporal order judgment and reaction time analysis. Perception, 38, 1649–1662.PubMedCrossRef
go back to reference Nijhawan, R. (1997). Visual decomposition of color through motion extrapolation. Nature, 386, 66–69.PubMedCrossRef Nijhawan, R. (1997). Visual decomposition of color through motion extrapolation. Nature, 386, 66–69.PubMedCrossRef
go back to reference Nijhawan, R. (2008). Visual prediction: Psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31, 179–239.PubMed Nijhawan, R. (2008). Visual prediction: Psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31, 179–239.PubMed
go back to reference Nijhawan, R., & Khurana, B. (2000). Conscious registration of continuous and discrete visual events. In T. Metzinger (Ed.), Neural correlates of consciousness: empirical and conceptual problems (pp. 203–219). Cambridge: MIT Press. Nijhawan, R., & Khurana, B. (2000). Conscious registration of continuous and discrete visual events. In T. Metzinger (Ed.), Neural correlates of consciousness: empirical and conceptual problems (pp. 203–219). Cambridge: MIT Press.
go back to reference Nijhawan, R., & Khurana, B. (Eds.). (2010). Space and time in perception and action. Cambridge: Cambridge University Press. Nijhawan, R., & Khurana, B. (Eds.). (2010). Space and time in perception and action. Cambridge: Cambridge University Press.
go back to reference Patel, S. S., Ögmen, H., Bedell, H., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science, 290, 1051a.CrossRef Patel, S. S., Ögmen, H., Bedell, H., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science, 290, 1051a.CrossRef
go back to reference Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2009). Improved visual sensitivity during smooth pursuit eye movements: temporal and spatial characteristics. Visual Neuroscience, 26, 329–340.PubMedCrossRef Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2009). Improved visual sensitivity during smooth pursuit eye movements: temporal and spatial characteristics. Visual Neuroscience, 26, 329–340.PubMedCrossRef
go back to reference Schütz, A. C., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2008). Improved visual sensitivity during smooth pursuit eye movements. Nature Neuroscience, 11, 1211–1216.PubMedCrossRef Schütz, A. C., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2008). Improved visual sensitivity during smooth pursuit eye movements. Nature Neuroscience, 11, 1211–1216.PubMedCrossRef
go back to reference Sturz, B. R., & Bodily, K. D. (2010). Encoding of variability of landmark-based spatial information. Psychological Research, 74, 560–567.PubMedCrossRef Sturz, B. R., & Bodily, K. D. (2010). Encoding of variability of landmark-based spatial information. Psychological Research, 74, 560–567.PubMedCrossRef
go back to reference Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40, 137–149.PubMedCrossRef Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40, 137–149.PubMedCrossRef
Metagegevens
Titel
Flash-lag effect: complicating motion extrapolation of the moving reference-stimulus paradoxically augments the effect
Auteurs
Talis Bachmann
Carolina Murd
Endel Põder
Publicatiedatum
01-09-2012
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 5/2012
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-011-0370-3

Andere artikelen Uitgave 5/2012

Psychological Research 5/2012 Naar de uitgave