Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2007

01-05-2007 | Original Article

Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives

Auteurs: Amy L. Shelton, Holly A. Pippitt

Gepubliceerd in: Psychological Research | Uitgave 3/2007

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Ground-level and aerial perspectives in virtual space provide simplified conditions for investigating differences between exploratory navigation and map reading in large-scale environmental learning. General similarities and differences in ground-level and aerial encoding have been identified, but little is known about the specific characteristics that differentiate them. One such characteristic is the need to process orientation; ground-level encoding (and navigation) typically requires dynamic orientations, whereas aerial encoding (and map reading) is typically conducted in a fixed orientation. The present study investigated how this factor affected spatial processing by comparing ground-level and aerial encoding to a hybrid condition: aerial-with-turns. Experiment 1 demonstrated that scene recognition was sensitive to both perspective (ground-level or aerial) and orientation (dynamic or fixed). Experiment 2 investigated brain activation during encoding, revealing regions that were preferentially activated perspective as in previous studies (Shelton and Gabrieli in J Neurosci 22:2711–2717, 2002), but also identifying regions that were preferentially activated as a function of the presence or absence of turns. Together, these results differentiated the behavioral and brain consequences attributable to changes in orientation from those attributable to other characteristics of ground-level and aerial perspectives, providing leverage on how orientation information is processed in everyday spatial learning.
Voetnoten
1
These paradigms have all used desktop virtual reality (VR) rather than immersive VR for several practical reasons. On-going investigations continue to assess the similarities among desktop VR, immersive VR, and real space, but there has been general support for enough similarity to warrant the use of both types of VR (Montello, Waller, Hegarty, & Richardson, 2004; Ruddle, Payne, & Jones, 1997). However, as with any laboratory study intended to bear on real-world conditions, these paradigms still require caution in overextending the conclusions that can be drawn.
 
2
Table 3 of Shelton and Gabrieli (2002) lists 18 different clusters. However, in identifying bilateral ROIs, two of the right parietal clusters corresponded to a single left parietal cluster. The activation patterns in these two ROIs were identical in the original data, so they were combined for the present purposes.
 
Literatuur
go back to reference Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: A synthesis and taxonomy. Brain, 122, 1613–1628.PubMedCrossRef Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: A synthesis and taxonomy. Brain, 122, 1613–1628.PubMedCrossRef
go back to reference Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6, 823–829.PubMedCrossRef Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6, 823–829.PubMedCrossRef
go back to reference Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35(2), 111–118.PubMedCrossRef Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35(2), 111–118.PubMedCrossRef
go back to reference Barnes, J., Howard, R. J., Senior, C., Brammer, M., Bullmore, E. T., Simmons, A., et al. (2000). Cortical activity during rotational and linear transformations. Neuropsychologia, 38, 1148–1156.PubMedCrossRef Barnes, J., Howard, R. J., Senior, C., Brammer, M., Bullmore, E. T., Simmons, A., et al. (2000). Cortical activity during rotational and linear transformations. Neuropsychologia, 38, 1148–1156.PubMedCrossRef
go back to reference Bisiach E., Perani D., Vallar G., & Berti A. (1986). Unilateral neglect: Personal and extra-personal space. Neuropsychologia, 24,759–767.PubMedCrossRef Bisiach E., Perani D., Vallar G., & Berti A. (1986). Unilateral neglect: Personal and extra-personal space. Neuropsychologia, 24,759–767.PubMedCrossRef
go back to reference Bonda, E., Petrides, M., Frey, S., & Evans, A. (1995). Neural correlates of mental transformations of the body-in-space. PNAS, 92(24), 11180–11184.PubMedCrossRef Bonda, E., Petrides, M., Frey, S., & Evans, A. (1995). Neural correlates of mental transformations of the body-in-space. PNAS, 92(24), 11180–11184.PubMedCrossRef
go back to reference Burgess, N. (2002). The hippocampus, space, and viewpoints in episodic memory. Quarterly Journal of Experimental Psychology, 55A(4), 1057–1080. Burgess, N. (2002). The hippocampus, space, and viewpoints in episodic memory. Quarterly Journal of Experimental Psychology, 55A(4), 1057–1080.
go back to reference Burgess, N., Jeffery, K. J., & O’Keefe, J. (Eds.). (1999). The hippocampal and parietal foundations of spatial cognition. Oxford: Oxford University Press. Burgess, N., Jeffery, K. J., & O’Keefe, J. (Eds.). (1999). The hippocampal and parietal foundations of spatial cognition. Oxford: Oxford University Press.
go back to reference Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of life events. NeuroImage, 14, 439–453.PubMedCrossRef Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of life events. NeuroImage, 14, 439–453.PubMedCrossRef
go back to reference Carpenter, P. A., Just, M. A., Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded functional activation in the visuospatial system with the amount of task demand. Journal of Cognitive Neuroscience, 11(1), 9–24.PubMedCrossRef Carpenter, P. A., Just, M. A., Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded functional activation in the visuospatial system with the amount of task demand. Journal of Cognitive Neuroscience, 11(1), 9–24.PubMedCrossRef
go back to reference Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A., & McNaughton, B. L. (1994). Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Experimental Brain Research, 101, 8–23.CrossRef Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A., & McNaughton, B. L. (1994). Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Experimental Brain Research, 101, 8–23.CrossRef
go back to reference Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, D. J., Thompson, W. L., Anderson, A. K., et al. (1996). Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain, 119, 89–100.PubMedCrossRef Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, D. J., Thompson, W. L., Anderson, A. K., et al. (1996). Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain, 119, 89–100.PubMedCrossRef
go back to reference Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavioral Research Methods, Instruments, and Computers, 25, 257–271. Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavioral Research Methods, Instruments, and Computers, 25, 257–271.
go back to reference Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53, 223–249.CrossRef Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53, 223–249.CrossRef
go back to reference Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209–226.PubMedCrossRef Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209–226.PubMedCrossRef
go back to reference Epstein, R., Graham, K. S., & Downing, P. E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex. Neuron, 37(5), 865–876.PubMedCrossRef Epstein, R., Graham, K. S., & Downing, P. E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex. Neuron, 37(5), 865–876.PubMedCrossRef
go back to reference Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. Journal of Experimental Psychology: Learning, Memory and Cognition (in press). Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. Journal of Experimental Psychology: Learning, Memory and Cognition (in press).
go back to reference Friston, K. J., Homes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 4, 189–210. Friston, K. J., Homes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 4, 189–210.
go back to reference Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press. Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.
go back to reference Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34(1), 161–171.PubMedCrossRef Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34(1), 161–171.PubMedCrossRef
go back to reference Ghaëm, O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., et al. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport, 8, 739–744.PubMedCrossRef Ghaëm, O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., et al. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport, 8, 739–744.PubMedCrossRef
go back to reference Goodridge, J. P., & Taube, J. S. (1995). Preferential use of the landmark navigational system by head direction cells in rats. Behavioral Neuroscience, 109, 49–61.PubMedCrossRef Goodridge, J. P., & Taube, J. S. (1995). Preferential use of the landmark navigational system by head direction cells in rats. Behavioral Neuroscience, 109, 49–61.PubMedCrossRef
go back to reference Halligan, P. W., & Marshall, J. C. (1991). Left neglect in near but not far space in man. Nature, 350, 498–500.PubMedCrossRef Halligan, P. W., & Marshall, J. C. (1991). Left neglect in near but not far space in man. Nature, 350, 498–500.PubMedCrossRef
go back to reference Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. G. (2000). Selective right parietal lobe activation during mental rotation: A parametric PET study. Brain, 123(1), 65–73.PubMedCrossRef Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. G. (2000). Selective right parietal lobe activation during mental rotation: A parametric PET study. Brain, 123(1), 65–73.PubMedCrossRef
go back to reference Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.PubMedCrossRef Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.PubMedCrossRef
go back to reference Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11), 6336–6353.PubMed Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11), 6336–6353.PubMed
go back to reference Holmes, A. P., & Friston, K. J. (1998). Generalisability, random effects and population inference. Neuroimage, 7, S754. Holmes, A. P., & Friston, K. J. (1998). Generalisability, random effects and population inference. Neuroimage, 7, S754.
go back to reference Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.PubMed Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.PubMed
go back to reference Maguire, E. A. (2001). The retrosplenial contributions to human navigation: A review of lesion and neuroimaging findings. Scandinavian Journal of Psychology, 42, 225–238.PubMedCrossRef Maguire, E. A. (2001). The retrosplenial contributions to human navigation: A review of lesion and neuroimaging findings. Scandinavian Journal of Psychology, 42, 225–238.PubMedCrossRef
go back to reference Maguire, E. A., Burgess, N., Donnott, J. G., Frackowiak, R. S. J., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there. A human navigation network. Science, 280, 921–924. Maguire, E. A., Burgess, N., Donnott, J. G., Frackowiak, R. S. J., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there. A human navigation network. Science, 280, 921–924.
go back to reference McNamara, T. P. (2003). How are the locations of objects in the environment represented in memory? In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial reasoning. LNAI 2685 (pp. 174–191). Berlin Heidelberg New York: Springer. McNamara, T. P. (2003). How are the locations of objects in the environment represented in memory? In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial reasoning. LNAI 2685 (pp. 174–191). Berlin Heidelberg New York: Springer.
go back to reference McNamara, T. P., & Shelton, A. L. (2003). Cognitive maps and the hippocampus. Trends in Cognitive Science, 7, 333–335.CrossRef McNamara, T. P., & Shelton, A. L. (2003). Cognitive maps and the hippocampus. Trends in Cognitive Science, 7, 333–335.CrossRef
go back to reference Mellet, E., Bricogne, S., Tzourio-Mazoyer, N., Ghaëm, O., Petit, L., Zago, L., et al. (2000). Neural correlates of topographic mental exploration: The impact of route versus survey learning. NeuroImage, 12, 588–600.PubMedCrossRef Mellet, E., Bricogne, S., Tzourio-Mazoyer, N., Ghaëm, O., Petit, L., Zago, L., et al. (2000). Neural correlates of topographic mental exploration: The impact of route versus survey learning. NeuroImage, 12, 588–600.PubMedCrossRef
go back to reference Moeser, S. D. (1988). Cognitive mapping in a complex building. Environment and Behavior, 20, 21–49.CrossRef Moeser, S. D. (1988). Cognitive mapping in a complex building. Environment and Behavior, 20, 21–49.CrossRef
go back to reference Montello, D. R., Waller, D., Hegarty, M., & Richardson, A. E. (2004). Spatial memory of real environments, virtual environments, and maps. In G. L. Allen (Eds.), Human spatial memory; remembering where (pp. 251–285). Mahwah, NJ: Lawrence Erlbaum Associates. Montello, D. R., Waller, D., Hegarty, M., & Richardson, A. E. (2004). Spatial memory of real environments, virtual environments, and maps. In G. L. Allen (Eds.), Human spatial memory; remembering where (pp. 251–285). Mahwah, NJ: Lawrence Erlbaum Associates.
go back to reference Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999). SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42, 952–962.PubMedCrossRef Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999). SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42, 952–962.PubMedCrossRef
go back to reference Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., et al. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310–320.PubMedCrossRef Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., et al. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310–320.PubMedCrossRef
go back to reference Robertson, I. H., & Marshall, J. C. (Eds.). (1993). Unilateral neglect: Clinical and experimental studies. Hove, UK: Lawrence Erlbaum Associates. Robertson, I. H., & Marshall, J. C. (Eds.). (1993). Unilateral neglect: Clinical and experimental studies. Hove, UK: Lawrence Erlbaum Associates.
go back to reference Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in ‘desk-top’ virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3, 143–159.CrossRef Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in ‘desk-top’ virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3, 143–159.CrossRef
go back to reference Rudge, P., & Warrington, E. K. (1991). Selective impairment of memory and visual perception in splenial tumors. Brain, 114, 349–360.PubMedCrossRef Rudge, P., & Warrington, E. K. (1991). Selective impairment of memory and visual perception in splenial tumors. Brain, 114, 349–360.PubMedCrossRef
go back to reference Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural correlates of encoding space from route and survey perspectives. Journal of Neuroscience, 22, 2711–2717.PubMed Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural correlates of encoding space from route and survey perspectives. Journal of Neuroscience, 22, 2711–2717.PubMed
go back to reference Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18, 442–449.PubMedCrossRef Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18, 442–449.PubMedCrossRef
go back to reference Shelton, A. L., & Jambulingam, N. (2006). What do you know? Self-assessed learning in route and survey environments, submitted for publication. Shelton, A. L., & Jambulingam, N. (2006). What do you know? Self-assessed learning in route and survey environments, submitted for publication.
go back to reference Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310.PubMedCrossRef Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310.PubMedCrossRef
go back to reference Shelton, A. L., & McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 158–170.PubMedCrossRef Shelton, A. L., & McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 158–170.PubMedCrossRef
go back to reference Shelton, A. L., Yamamoto, N., Fields, A. W., & Spence, G. O. (2006). Sequential information in route and survey environmental learning, submitted for publication. Shelton, A. L., Yamamoto, N., Fields, A. W., & Spence, G. O. (2006). Sequential information in route and survey environmental learning, submitted for publication.
go back to reference Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 9–55). New York: Academic. Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 9–55). New York: Academic.
go back to reference Tagaris, G. A. (1998). Functional magnetic resonance imaging of mental rotation and memory scanning: A multidimensional scaling analysis of brain activation patterns. Brain Research Reviews, 26(2–3), 106–112.PubMedCrossRef Tagaris, G. A. (1998). Functional magnetic resonance imaging of mental rotation and memory scanning: A multidimensional scaling analysis of brain activation patterns. Brain Research Reviews, 26(2–3), 106–112.PubMedCrossRef
go back to reference Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N., & Hirayama, K. (1997). Pure topographical disorientation due to right retrosplenial lesion. Neurology, 49, 464–469.PubMed Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N., & Hirayama, K. (1997). Pure topographical disorientation due to right retrosplenial lesion. Neurology, 49, 464–469.PubMed
go back to reference Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.PubMed Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.PubMed
go back to reference Taube, J. S., Goodridge, J. P., Golob, E. J., Dudchenko, P. A., & Stackman, R. W. (1996). Processing the head direction cell signal: A review and commentary. Brain Research Bulletin, 40, 477–486.PubMedCrossRef Taube, J. S., Goodridge, J. P., Golob, E. J., Dudchenko, P. A., & Stackman, R. W. (1996). Processing the head direction cell signal: A review and commentary. Brain Research Bulletin, 40, 477–486.PubMedCrossRef
go back to reference Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.PubMedCrossRef Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.PubMedCrossRef
go back to reference Tlauka, M., & Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer simulated environment. Journal of Environmental Psychology, 14, 303–313.CrossRef Tlauka, M., & Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer simulated environment. Journal of Environmental Psychology, 14, 303–313.CrossRef
go back to reference Tversky, B. (1991). Spatial mental models. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 27, pp. 109–145). San Diego: Academic. Tversky, B. (1991). Spatial mental models. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 27, pp. 109–145). San Diego: Academic.
go back to reference Vanrie, J., Béatse, E., Wagemans, J., Sunaert, S., & Van Hecke, P. (2002). Mental rotation versus invariant features in object perception from different viewpoints: An fMRI study. Neuropsychologia, 40, 917–930.PubMedCrossRef Vanrie, J., Béatse, E., Wagemans, J., Sunaert, S., & Van Hecke, P. (2002). Mental rotation versus invariant features in object perception from different viewpoints: An fMRI study. Neuropsychologia, 40, 917–930.PubMedCrossRef
go back to reference Waterman, S., & Gordon, D. (1984). A quantitative-comparative approach to analysis of distortion in mental maps. Professional Geographer, 36(3), 326–337.CrossRef Waterman, S., & Gordon, D. (1984). A quantitative-comparative approach to analysis of distortion in mental maps. Professional Geographer, 36(3), 326–337.CrossRef
go back to reference Weiss, P. H., Marshall, J. C., Wunderlich, G., Tellmann, L., Halligan, P. W., Freund, H.-J., et al. (2000). Neural consequences of acting in near versus far space: A physiological basis for clinical dissociations. Brain, 123, 2531–2541.PubMedCrossRef Weiss, P. H., Marshall, J. C., Wunderlich, G., Tellmann, L., Halligan, P. W., Freund, H.-J., et al. (2000). Neural consequences of acting in near versus far space: A physiological basis for clinical dissociations. Brain, 123, 2531–2541.PubMedCrossRef
go back to reference Werner, S., & Schmidt, K. (1999). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1(4), 447–473.CrossRef Werner, S., & Schmidt, K. (1999). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1(4), 447–473.CrossRef
go back to reference Wolbers, T., & Buchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. Journal of Neuroscience, 25(13), 3333–3340.PubMedCrossRef Wolbers, T., & Buchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. Journal of Neuroscience, 25(13), 3333–3340.PubMedCrossRef
go back to reference Yamamoto, N., & Shelton, A. L. (2005). Visual and proprioceptive representations in spatial memory. Memory & Cognition, 33(1), 140–150. Yamamoto, N., & Shelton, A. L. (2005). Visual and proprioceptive representations in spatial memory. Memory & Cognition, 33(1), 140–150.
go back to reference Zacks, J., Rypma, B., Gabrieli, J. D. E., Tversky, B., & Glover, G. H. (1999). Imagined transformations of bodies: An fMRI investigation. Neuropsychologia, 37(9), 1029–1040.PubMedCrossRef Zacks, J., Rypma, B., Gabrieli, J. D. E., Tversky, B., & Glover, G. H. (1999). Imagined transformations of bodies: An fMRI investigation. Neuropsychologia, 37(9), 1029–1040.PubMedCrossRef
Metagegevens
Titel
Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives
Auteurs
Amy L. Shelton
Holly A. Pippitt
Publicatiedatum
01-05-2007
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 3/2007
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-006-0088-9

Andere artikelen Uitgave 3/2007

Psychological Research 3/2007 Naar de uitgave