Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2020

16-01-2018 | Original Article

Feature codes in implicit sequence learning: perceived stimulus locations transfer to motor response locations

Auteurs: Hilde Haider, Sarah Esser, Katharina Eberhardt

Gepubliceerd in: Psychological Research | Uitgave 1/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

An important question in implicit sequence learning research is how the learned information is represented. In earlier models, the representations underlying implicit learning were viewed as being either purely motor or perceptual. These different conceptions were later integrated by multidimensional models such as the Dual System Model of Keele et al. (Psychol Rev 110(2):316–339, 2003). According to this model, different types of sequential information can be learned in parallel, as long as each sequence comprised only one single dimension (e.g., shapes, colors, or response locations). The term dimension, though, is underspecified as it remains an open question whether the involved learning modules are restricted to motor or to perceptual information. This study aims to show that the modules of the implicit learning system are not specific to motor or perceptual processing. Rather, each module processes an abstract feature code which represents both response- and perception-related information. In two experiments, we showed that perceiving a stimulus-location sequence transferred to a motor response-location sequence. This result shows that the mere perception of a sequential feature automatically leads to an activation of the respective motor feature, supporting the notion of abstract feature codes being the basic modules of the implicit learning system. This result could only be obtained, though, when the task instructions emphasized the encoding of the stimulus-locations as opposed to an encoding of the color features. This limitation will be discussed taking into account the importance of the instructed task set.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Abrahamse, E.L., Jiménez, L., Verwey, W.B., & Clegg, B.A. (2010). Representing serial action and perception. Psychonomic Bulletin, 17, 603–623.CrossRef Abrahamse, E.L., Jiménez, L., Verwey, W.B., & Clegg, B.A. (2010). Representing serial action and perception. Psychonomic Bulletin, 17, 603–623.CrossRef
go back to reference Cleeremans, A., & Dienes, Z. (2008). Computational models of implicit learning. In R. Sun (Ed.), The Cambridge handbook of computationalpsychology (pp. 396–421). Cambridge: Cambridge University Press. Cleeremans, A., & Dienes, Z. (2008). Computational models of implicit learning. In R. Sun (Ed.), The Cambridge handbook of computationalpsychology (pp. 396–421). Cambridge: Cambridge University Press.
go back to reference Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 17–30. Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 17–30.
go back to reference Deroost, N., & Soetens, E. (2006). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research Psychologische Forschung, 70, 88–102.CrossRef Deroost, N., & Soetens, E. (2006). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research Psychologische Forschung, 70, 88–102.CrossRef
go back to reference Dreisbach, G., & Haider, H. (2009). How task representations guide attention: Further evidence for the shielding function of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(2), 477–486.PubMed Dreisbach, G., & Haider, H. (2009). How task representations guide attention: Further evidence for the shielding function of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(2), 477–486.PubMed
go back to reference Eberhardt, K., Esser, S., & Haider, H. (2017). Abstract feature codes: The basic modules of the implicit learning system. Journal of Experimental Psychology. Human Perception and Performance, 43(7), 1275–1290.CrossRef Eberhardt, K., Esser, S., & Haider, H. (2017). Abstract feature codes: The basic modules of the implicit learning system. Journal of Experimental Psychology. Human Perception and Performance, 43(7), 1275–1290.CrossRef
go back to reference Frensch, P. A. (1998). One concept, multiple meanings: On how to define the concept of implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 47–104). Thousand Oaks, CA: Sage Publications, Inc. Frensch, P. A. (1998). One concept, multiple meanings: On how to define the concept of implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 47–104). Thousand Oaks, CA: Sage Publications, Inc.
go back to reference Gaschler, R., Frensch, P. A., Cohen, A., & Wenke, D. (2012). Implicit sequence learning based on instructed task set. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1389–1407.PubMed Gaschler, R., Frensch, P. A., Cohen, A., & Wenke, D. (2012). Implicit sequence learning based on instructed task set. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1389–1407.PubMed
go back to reference Goschke, T., & Bolte, A. (2012). On the modularity of implicit sequence learning: Independent acquisition of spatial, symbolic, and manual sequences. Cognitive Psychology, 65, 284–320.CrossRef Goschke, T., & Bolte, A. (2012). On the modularity of implicit sequence learning: Independent acquisition of spatial, symbolic, and manual sequences. Cognitive Psychology, 65, 284–320.CrossRef
go back to reference Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1998). Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience, 18, 9420–9428.CrossRef Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1998). Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience, 18, 9420–9428.CrossRef
go back to reference Grafton, S. T., Hazeltine, E., & Ivry, R. B. (2002). Motor sequence learning with the non-dominant hand: A PET functional imaging study. Experimental Brain Research, 146, 369–378.CrossRef Grafton, S. T., Hazeltine, E., & Ivry, R. B. (2002). Motor sequence learning with the non-dominant hand: A PET functional imaging study. Experimental Brain Research, 146, 369–378.CrossRef
go back to reference Haider, H., Eberhardt, K., Esser, S., & Rose, M. (2014). Implicit visual learning: How the task set modulates learning by determining the stimulus-response binding. Consciousness and Cognition, 26, 145–161.CrossRef Haider, H., Eberhardt, K., Esser, S., & Rose, M. (2014). Implicit visual learning: How the task set modulates learning by determining the stimulus-response binding. Consciousness and Cognition, 26, 145–161.CrossRef
go back to reference Haider, H., Eberhardt, K., Kunde, A., & Rose, M. (2012). Implicit visual learning and the expression of learning. Consciousness and Cognition, 22, 82–98.CrossRef Haider, H., Eberhardt, K., Kunde, A., & Rose, M. (2012). Implicit visual learning and the expression of learning. Consciousness and Cognition, 22, 82–98.CrossRef
go back to reference Haider, H., Eichler, A., & Lange, T. (2011). An old problem: How can we distinguish between conscious and unconscious knowledge acquired in an implicit learning task? Consciousness and Cognition, 20, 658–672.CrossRef Haider, H., Eichler, A., & Lange, T. (2011). An old problem: How can we distinguish between conscious and unconscious knowledge acquired in an implicit learning task? Consciousness and Cognition, 20, 658–672.CrossRef
go back to reference Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494–500.CrossRef Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494–500.CrossRef
go back to reference Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.CrossRef Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.CrossRef
go back to reference Howard, J. H., Mutter, S. A., & Howard, D. V. (1992). Serial pattern learning by event observation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1029–1039.PubMed Howard, J. H., Mutter, S. A., & Howard, D. V. (1992). Serial pattern learning by event observation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1029–1039.PubMed
go back to reference Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316–339.CrossRef Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316–339.CrossRef
go back to reference Keele, S. W., Jennings, P., Jones, S., Caulton, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30.CrossRef Keele, S. W., Jennings, P., Jones, S., Caulton, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30.CrossRef
go back to reference Loftus, G.R. & Masson, M.E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476–490.CrossRef Loftus, G.R. & Masson, M.E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476–490.CrossRef
go back to reference Magen, H., & Cohen, A. (2002). Action-based and vision-based selection of input: Two sources of control. Psychological Research Psychologische Forschung, 66, 247–259.CrossRef Magen, H., & Cohen, A. (2002). Action-based and vision-based selection of input: Two sources of control. Psychological Research Psychologische Forschung, 66, 247–259.CrossRef
go back to reference Magen, H., & Cohen, A. (2007). Modularity beyond perception: Evidence from single task interference paradigms. Cognitive Psychology, 55, 1–36.CrossRef Magen, H., & Cohen, A. (2007). Modularity beyond perception: Evidence from single task interference paradigms. Cognitive Psychology, 55, 1–36.CrossRef
go back to reference Magen, H., & Cohen, A. (2010). Modularity beyond perception: Evidence from the PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 36, 395–414.PubMed Magen, H., & Cohen, A. (2010). Modularity beyond perception: Evidence from the PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 36, 395–414.PubMed
go back to reference Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 350–364. Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 350–364.
go back to reference Memelink, J., & Hommel, B. (2013). Intentional weighting: A basic principle in cognitive control. Psychological Research Psychologische Forschung, 77, 249–259.CrossRef Memelink, J., & Hommel, B. (2013). Intentional weighting: A basic principle in cognitive control. Psychological Research Psychologische Forschung, 77, 249–259.CrossRef
go back to reference Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measure. Cognitive Psychology, 19, 1–32.CrossRef Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measure. Cognitive Psychology, 19, 1–32.CrossRef
go back to reference Schumacher, E. H., & Schwarb, H. (2009). Parallel Response Selection Disrupts Sequence Learning Under Dual-Task Conditions. Journal of Experimental Psychology: General, 138, 270–290.CrossRef Schumacher, E. H., & Schwarb, H. (2009). Parallel Response Selection Disrupts Sequence Learning Under Dual-Task Conditions. Journal of Experimental Psychology: General, 138, 270–290.CrossRef
go back to reference Schwarb, H., & Schumacher, E. H. (2010). Implicit sequence learning is represented by stimulus-response rules. Memory and Cognition, 38, 677–688.CrossRef Schwarb, H., & Schumacher, E. H. (2010). Implicit sequence learning is represented by stimulus-response rules. Memory and Cognition, 38, 677–688.CrossRef
go back to reference Vinter, A., & Perruchet, P. (2002). Implicit motor learning through observational training in adults and children. Memory and Cognition, 30, 256–261.CrossRef Vinter, A., & Perruchet, P. (2002). Implicit motor learning through observational training in adults and children. Memory and Cognition, 30, 256–261.CrossRef
go back to reference Whittlesea, B. W., & Dorken, M. D. (1993). Incidentally, things in general are particularly determined: An episodic-processing account of implicit learning. Journal of Experimental Psychology: General, 122, 227–248.CrossRef Whittlesea, B. W., & Dorken, M. D. (1993). Incidentally, things in general are particularly determined: An episodic-processing account of implicit learning. Journal of Experimental Psychology: General, 122, 227–248.CrossRef
go back to reference Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. (2000). Implicit motor sequence learning is represented in response locations. Memory and Cognition, 28(3), 366–375.CrossRef Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. (2000). Implicit motor sequence learning is represented in response locations. Memory and Cognition, 28(3), 366–375.CrossRef
go back to reference Willingham, D. T. (1999). Implicit motor sequence learning is not purely perceptual. Memory and Cognition, 27, 561–572.CrossRef Willingham, D. T. (1999). Implicit motor sequence learning is not purely perceptual. Memory and Cognition, 27, 561–572.CrossRef
Metagegevens
Titel
Feature codes in implicit sequence learning: perceived stimulus locations transfer to motor response locations
Auteurs
Hilde Haider
Sarah Esser
Katharina Eberhardt
Publicatiedatum
16-01-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-0980-0

Andere artikelen Uitgave 1/2020

Psychological Research 1/2020 Naar de uitgave