Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2010

01-03-2010 | Original Article

Factors influencing online control of video-aiming movements performed without vision of the cursor

Auteurs: Louis-Nicolas Veilleux, Luc Proteau

Gepubliceerd in: Psychological Research | Uitgave 2/2010

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

A modulation of the primary impulse of manual/video-aiming movements performed without visual feedback has been reported. In the present study, we show that this modulation is modified (a) with increased practice, (b) the use of an aligned visual display, and (c) the availability of visual feedback on alternated trials. However, this modulation was not as efficient as that observed in a normal vision condition, which underlines the primary role of vision to ensure endpoint accuracy. Moreover, this modulation was observed only on the extent component of the task. This last observation indicates that proprioception can be used to modulate the extent component of goal-directed movements but that vision is necessary to modulate their direction.
Voetnoten
1
As suggested by H. N. Zelaznik, in Experiment 3 we also looked at within-participant variability at every two percent of normalized movement time. The results of this analysis were similar to those reported in the present study. On the extent component of the task for both vision conditions there was a significant reduction in variability late in the movement suggesting a modulation of the movement’s primary impulse (see Selen et al. (2006) for similar results and interpretation). On the direction component of the task, only the normal vision condition resulted in a significant decrease in variability late in movement, which is also similar to the data reported in the main text. However, in this supplementary analysis the modulation of the movement’s primary impulse appeared earlier (near 50% of normalized movement time) than in the analyses reported in the main text.
 
Literatuur
go back to reference Abahnini, K., & Proteau, L. (1999). The role of peripheral and central visual information for the directional control of manual aiming movements. Canadian Journal of Experimental Psychology, 53(2), 160–175.PubMed Abahnini, K., & Proteau, L. (1999). The role of peripheral and central visual information for the directional control of manual aiming movements. Canadian Journal of Experimental Psychology, 53(2), 160–175.PubMed
go back to reference Bagesteiro, L. B., Sarlegna, F. R., & Sainburg, R. L. (2006). Differential influence of vision and proprioception on control of movement distance. Experimental Brain Research, 171(3), 358–370.CrossRef Bagesteiro, L. B., Sarlegna, F. R., & Sainburg, R. L. (2006). Differential influence of vision and proprioception on control of movement distance. Experimental Brain Research, 171(3), 358–370.CrossRef
go back to reference Bédard, P., & Proteau, L. (2003). On the role of peripheral visual afferent information for the control of rapid video-aiming movements. Acta Psychologica, 113(1), 99–117.CrossRefPubMed Bédard, P., & Proteau, L. (2003). On the role of peripheral visual afferent information for the control of rapid video-aiming movements. Acta Psychologica, 113(1), 99–117.CrossRefPubMed
go back to reference Bédard, P., & Proteau, L. (2004). On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements. Experimental Brain Research, 158(1), 75–85.CrossRef Bédard, P., & Proteau, L. (2004). On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements. Experimental Brain Research, 158(1), 75–85.CrossRef
go back to reference Bédard, P., & Proteau, L. (2005). Movement planning of video and of manual aiming movements. Spatial Vision, 18(3), 275–296.CrossRefPubMed Bédard, P., & Proteau, L. (2005). Movement planning of video and of manual aiming movements. Spatial Vision, 18(3), 275–296.CrossRefPubMed
go back to reference Carlton, L. G. (1981). Processing visual feedback information for movement control. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 1019–1030.CrossRefPubMed Carlton, L. G. (1981). Processing visual feedback information for movement control. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 1019–1030.CrossRefPubMed
go back to reference Cheng, D. T., Luis, M., & Tremblay, L. (2008). Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research, 189(4), 403–410.CrossRef Cheng, D. T., Luis, M., & Tremblay, L. (2008). Randomizing visual feedback in manual aiming: reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research, 189(4), 403–410.CrossRef
go back to reference Darling, W. G., & Cooke, J. D. (1987). Changes in the variability of movement trajectories with practice. Journal of Motor Behavior, 19(3), 291–309.PubMed Darling, W. G., & Cooke, J. D. (1987). Changes in the variability of movement trajectories with practice. Journal of Motor Behavior, 19(3), 291–309.PubMed
go back to reference Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neuroscience, 2(6), 563–567.CrossRefPubMed Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neuroscience, 2(6), 563–567.CrossRefPubMed
go back to reference Desmurget, M., Rossetti, Y., Prablanc, C., Stelmach, G. E., & Jeannerod, M. (1995). Representation of hand position prior to movement and motor variability. Canadian Journal of Physiology and Pharmacology, 73(2), 262–272.PubMed Desmurget, M., Rossetti, Y., Prablanc, C., Stelmach, G. E., & Jeannerod, M. (1995). Representation of hand position prior to movement and motor variability. Canadian Journal of Physiology and Pharmacology, 73(2), 262–272.PubMed
go back to reference Elliott, D., & Allard, F. (1985). The utilization of visual feedback information during rapid pointing movements. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 37(3), 407–425. Elliott, D., & Allard, F. (1985). The utilization of visual feedback information during rapid pointing movements. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 37(3), 407–425.
go back to reference Elliott, D., & Calvert, R. (1990). The influence of uncertainty and premovement visual information on manual aiming. Canadian Journal of Psychology, 44(4), 501–511.PubMed Elliott, D., & Calvert, R. (1990). The influence of uncertainty and premovement visual information on manual aiming. Canadian Journal of Psychology, 44(4), 501–511.PubMed
go back to reference Elliott, D., Carson, R. G., Goodman, D., & Chua, R. (1991). Discrete vs. continuous visual control of manual aiming. Human Movement Science, 10(4), 393–418.CrossRef Elliott, D., Carson, R. G., Goodman, D., & Chua, R. (1991). Discrete vs. continuous visual control of manual aiming. Human Movement Science, 10(4), 393–418.CrossRef
go back to reference Elliott, D., & Madalena, J. (1987). The influence of premovement visual information on manual aiming. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 39(3), 541–559. Elliott, D., & Madalena, J. (1987). The influence of premovement visual information on manual aiming. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 39(3), 541–559.
go back to reference Goodale, M. A., Pelisson, D., & Prablanc, C. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature, 320(6064), 748–750.CrossRefPubMed Goodale, M. A., Pelisson, D., & Prablanc, C. (1986). Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature, 320(6064), 748–750.CrossRefPubMed
go back to reference Gordon, J., Ghilardi, M. F., Cooper, S. E., & Ghez, C. (1994). Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Experimental Brain Research, 99(1), 112–130.CrossRef Gordon, J., Ghilardi, M. F., Cooper, S. E., & Ghez, C. (1994). Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Experimental Brain Research, 99(1), 112–130.CrossRef
go back to reference Guigon, E., Baraduc, P., & Desmurget, M. (2008). Computational motor control: feedback and accuracy. European Journal of Neuroscience, 27(4), 1003–1016.CrossRefPubMed Guigon, E., Baraduc, P., & Desmurget, M. (2008). Computational motor control: feedback and accuracy. European Journal of Neuroscience, 27(4), 1003–1016.CrossRefPubMed
go back to reference Hansen, S., Glazebrook, C. M., Anson, J. G., Weeks, D. J., & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60(3), 200–208.PubMed Hansen, S., Glazebrook, C. M., Anson, J. G., Weeks, D. J., & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60(3), 200–208.PubMed
go back to reference Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784.CrossRefPubMed Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784.CrossRefPubMed
go back to reference Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9(3), 281–311.PubMed Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9(3), 281–311.PubMed
go back to reference Khan, M. A., Elliott, D., Coull, J., Chua, R., & Lyons, J. (2002). Optimal control strategies under different feedback schedules: kinematic evidence. Journal of Motor Behavior, 34(1), 45–57.CrossRefPubMed Khan, M. A., Elliott, D., Coull, J., Chua, R., & Lyons, J. (2002). Optimal control strategies under different feedback schedules: kinematic evidence. Journal of Motor Behavior, 34(1), 45–57.CrossRefPubMed
go back to reference Khan, M. A., Franks, I. M., & Goodman, D. (1998). The effect of practice on the control of rapid aiming movements: Evidence for an interdependency between programming and feedback processing. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 51(2), 425–443. Khan, M. A., Franks, I. M., & Goodman, D. (1998). The effect of practice on the control of rapid aiming movements: Evidence for an interdependency between programming and feedback processing. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 51(2), 425–443.
go back to reference Khan, M. A., Lawrence, G., Fourkas, A., Franks, I. M., Elliott, D., & Pembroke, S. (2003). Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychologica, 113(1), 83–97.CrossRefPubMed Khan, M. A., Lawrence, G., Fourkas, A., Franks, I. M., Elliott, D., & Pembroke, S. (2003). Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychologica, 113(1), 83–97.CrossRefPubMed
go back to reference Lateiner, J. E., & Sainburg, R. L. (2003). Differential contributions of vision and proprioception to movement accuracy. Experimental Brain Research, 151(4), 446–454.CrossRef Lateiner, J. E., & Sainburg, R. L. (2003). Differential contributions of vision and proprioception to movement accuracy. Experimental Brain Research, 151(4), 446–454.CrossRef
go back to reference Lemay, M., Gagnon, S., & Proteau, L. (2004). Manual pointing to remembered targets.but also in a remembered visual context. Acta Psychologica, 117(2), 139–153.CrossRefPubMed Lemay, M., Gagnon, S., & Proteau, L. (2004). Manual pointing to remembered targets.but also in a remembered visual context. Acta Psychologica, 117(2), 139–153.CrossRefPubMed
go back to reference Lhuisset, L., & Proteau, L. (2002). Developmental aspects of the control of manual aiming movements in aligned and non-aligned visual displays. Experimental Brain Research, 146(3), 293–306.CrossRef Lhuisset, L., & Proteau, L. (2002). Developmental aspects of the control of manual aiming movements in aligned and non-aligned visual displays. Experimental Brain Research, 146(3), 293–306.CrossRef
go back to reference Lhuisset, L., & Proteau, L. (2004). Planning and control of straight-ahead and angled planar movements in adults and young children. Canadian Journal of Experimental Psychology, 58(4), 245–258.PubMed Lhuisset, L., & Proteau, L. (2004). Planning and control of straight-ahead and angled planar movements in adults and young children. Canadian Journal of Experimental Psychology, 58(4), 245–258.PubMed
go back to reference Lyons, J., Hansen, S., Hurding, S., & Elliott, D. (2006). Optimizing rapid aiming behaviour: Movement kinematics depend on the cost of corrective modifications. Experimental Brain Research, 174(1), 95–100.CrossRef Lyons, J., Hansen, S., Hurding, S., & Elliott, D. (2006). Optimizing rapid aiming behaviour: Movement kinematics depend on the cost of corrective modifications. Experimental Brain Research, 174(1), 95–100.CrossRef
go back to reference Mackrous, I., & Proteau, L. (2007). Specificity of practice results from differences in movement planning strategies. Experimental Brain Research, 183(2), 181–193.CrossRef Mackrous, I., & Proteau, L. (2007). Specificity of practice results from differences in movement planning strategies. Experimental Brain Research, 183(2), 181–193.CrossRef
go back to reference Messier, J., & Kalaska, J. F. (1997). Differential effect of task conditions on errors of direction and extent of reaching movements. Experimental Brain Research, 115(3), 469–478.CrossRef Messier, J., & Kalaska, J. F. (1997). Differential effect of task conditions on errors of direction and extent of reaching movements. Experimental Brain Research, 115(3), 469–478.CrossRef
go back to reference Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125(2), 139–152.CrossRef Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125(2), 139–152.CrossRef
go back to reference Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95(3), 340–370.CrossRefPubMed Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95(3), 340–370.CrossRefPubMed
go back to reference Neely, K. A., Tessmer, A., Binsted, G., & Heath, M. (2008). Goal-directed reaching: Movement strategies influence the weighting of allocentric and egocentric visual cues. Experimental Brain Research, 186(3), 375–384.CrossRef Neely, K. A., Tessmer, A., Binsted, G., & Heath, M. (2008). Goal-directed reaching: Movement strategies influence the weighting of allocentric and egocentric visual cues. Experimental Brain Research, 186(3), 375–384.CrossRef
go back to reference Novak, K. E., Miller, L. E., & Houk, J. C. (2002). The use of overlapping submovements in the control of rapid hand movements. Experimental Brain Research, 144(3), 351–364.CrossRef Novak, K. E., Miller, L. E., & Houk, J. C. (2002). The use of overlapping submovements in the control of rapid hand movements. Experimental Brain Research, 144(3), 351–364.CrossRef
go back to reference Novak, K. E., Miller, L. E., & Houk, J. C. (2003). Features of motor performance that drive adaptation in rapid hand movements. Experimental Brain Research, 148(3), 388–400. Novak, K. E., Miller, L. E., & Houk, J. C. (2003). Features of motor performance that drive adaptation in rapid hand movements. Experimental Brain Research, 148(3), 388–400.
go back to reference Papaxanthis, C., Pozzo, T., & McIntyre, J. (2005). Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience, 135(2), 371–383.CrossRefPubMed Papaxanthis, C., Pozzo, T., & McIntyre, J. (2005). Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience, 135(2), 371–383.CrossRefPubMed
go back to reference Prablanc, C., & Martin, O. (1992). Automatic control during hand reaching at undetected two-dimensional target displacements. Journal of Neurophysiology, 67(2), 455–469.PubMed Prablanc, C., & Martin, O. (1992). Automatic control during hand reaching at undetected two-dimensional target displacements. Journal of Neurophysiology, 67(2), 455–469.PubMed
go back to reference Proteau, L. (2005). Visual afferent information dominates other sources of afferent information during mixed practice of a video-aiming task. Experimental Brain Research, 161(4), 441–456.CrossRef Proteau, L. (2005). Visual afferent information dominates other sources of afferent information during mixed practice of a video-aiming task. Experimental Brain Research, 161(4), 441–456.CrossRef
go back to reference Proteau, L., & Isabelle, G. (2002). On the role of visual afferent information for the control of aiming movements toward targets of different sizes. Journal of Motor Behavior, 34(4), 367–384.CrossRefPubMed Proteau, L., & Isabelle, G. (2002). On the role of visual afferent information for the control of aiming movements toward targets of different sizes. Journal of Motor Behavior, 34(4), 367–384.CrossRefPubMed
go back to reference Proteau, L., & Masson, G. (1997). Visual perception modifies goal-directed movement control: Supporting evidence from a visual perturbation paradigm. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 50(4), 726–741. Proteau, L., & Masson, G. (1997). Visual perception modifies goal-directed movement control: Supporting evidence from a visual perturbation paradigm. Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 50(4), 726–741.
go back to reference Proteau, L., Roujoula, A., & Messier, J. (2009). Online control of video aiming movements: fast and efficient corrections of undetected experimentally-induced errors. Journal of Motor Behavior, in press. Proteau, L., Roujoula, A., & Messier, J. (2009). Online control of video aiming movements: fast and efficient corrections of undetected experimentally-induced errors. Journal of Motor Behavior, in press.
go back to reference Robin, C., Toussaint, L., Blandin, Y., & Proteau, L. (2005). Specificity of learning in a video-aiming task: modifying the salience of dynamic visual cues. Journal of Motor Behavior, 37(5), 367–376.CrossRefPubMed Robin, C., Toussaint, L., Blandin, Y., & Proteau, L. (2005). Specificity of learning in a video-aiming task: modifying the salience of dynamic visual cues. Journal of Motor Behavior, 37(5), 367–376.CrossRefPubMed
go back to reference Sarlegna, F., Blouin, J., Bresciani, J. P., Bourdin, C., Vercher, J. L., & Gauthier, G. M. (2003). Target and hand position information in the online control of goal-directed arm movements. Experimental Brain Research, 151(4), 524–535.CrossRef Sarlegna, F., Blouin, J., Bresciani, J. P., Bourdin, C., Vercher, J. L., & Gauthier, G. M. (2003). Target and hand position information in the online control of goal-directed arm movements. Experimental Brain Research, 151(4), 524–535.CrossRef
go back to reference Sarlegna, F., Blouin, J., Vercher, J. L., Bresciani, J. P., Bourdin, C., & Gauthier, G. M. (2004). Online control of the direction of rapid reaching movements. Experimental Brain Research, 157(4), 468–471.CrossRef Sarlegna, F., Blouin, J., Vercher, J. L., Bresciani, J. P., Bourdin, C., & Gauthier, G. M. (2004). Online control of the direction of rapid reaching movements. Experimental Brain Research, 157(4), 468–471.CrossRef
go back to reference Saunders, J. A., & Knill, D. C. (2003). Humans use continuous visual feedback from the hand to control fast reaching movements. Experimental Brain Research, 152(3), 341–352.CrossRef Saunders, J. A., & Knill, D. C. (2003). Humans use continuous visual feedback from the hand to control fast reaching movements. Experimental Brain Research, 152(3), 341–352.CrossRef
go back to reference Saunders, J. A., & Knill, D. C. (2004). Visual feedback control of hand movements. Journal of Neuroscience, 24(13), 3223–3234.CrossRefPubMed Saunders, J. A., & Knill, D. C. (2004). Visual feedback control of hand movements. Journal of Neuroscience, 24(13), 3223–3234.CrossRefPubMed
go back to reference Saunders, J. A., & Knill, D. C. (2005). Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements. Experimental Brain Research, 162(4), 458–473.CrossRef Saunders, J. A., & Knill, D. C. (2005). Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements. Experimental Brain Research, 162(4), 458–473.CrossRef
go back to reference Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn, J. T, Jr. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 47(5), 415–451.CrossRefPubMed Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn, J. T, Jr. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 47(5), 415–451.CrossRefPubMed
go back to reference Selen, L. P., Beek, P. J., & van Dieen, J. H. (2006). Impedance is modulated to meet accuracy demands during goal-directed arm movements. Experimental Brain Research, 172(1), 129–138.CrossRef Selen, L. P., Beek, P. J., & van Dieen, J. H. (2006). Impedance is modulated to meet accuracy demands during goal-directed arm movements. Experimental Brain Research, 172(1), 129–138.CrossRef
go back to reference van Beers, R. J., Haggard, P., & Wolpert, D. M. (2004). The role of execution noise in movement variability. Journal of Neurophysiology, 91(2), 1050–1063.CrossRefPubMed van Beers, R. J., Haggard, P., & Wolpert, D. M. (2004). The role of execution noise in movement variability. Journal of Neurophysiology, 91(2), 1050–1063.CrossRefPubMed
go back to reference van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12(10), 834–837.CrossRefPubMed van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12(10), 834–837.CrossRefPubMed
go back to reference Whitney, D., Westwood, D. A., & Goodale, M. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature, 423(6942), 869–873.CrossRefPubMed Whitney, D., Westwood, D. A., & Goodale, M. A. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature, 423(6942), 869–873.CrossRefPubMed
go back to reference Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review Monographs, 3(Whole No. 13), 1–119. Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review Monographs, 3(Whole No. 13), 1–119.
Metagegevens
Titel
Factors influencing online control of video-aiming movements performed without vision of the cursor
Auteurs
Louis-Nicolas Veilleux
Luc Proteau
Publicatiedatum
01-03-2010
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2010
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-009-0229-z

Andere artikelen Uitgave 2/2010

Psychological Research 2/2010 Naar de uitgave