Skip to main content
Top
Gepubliceerd in:

01-05-2015 | Original Paper

Facial Structure Analysis Separates Autism Spectrum Disorders into Meaningful Clinical Subgroups

Auteurs: Tayo Obafemi-Ajayi, Judith H. Miles, T. Nicole Takahashi, Wenchuan Qi, Kristina Aldridge, Minqi Zhang, Shi-Qing Xin, Ying He, Ye Duan

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 5/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in Mol Autism 2(1):15, 2011). Geodesic distances between standardized facial landmarks were measured from three-dimensional stereo-photogrammetric images. Subjects were evaluated for autism-related symptoms, neurologic, cognitive, familial, and phenotypic variants. The most compact cluster is clinically characterized by severe ASD, significant cognitive impairment and language regression. This verifies utility of facially-based ASD subtypes and validates Aldridge et al.’s severe ASD subgroup, notwithstanding different techniques. It suggests that language regression may define a unique ASD subgroup with potential etiologic differences.
Literatuur
go back to reference Aldridge, K., George, I., Cole, K., Austin, J., Takahashi, T. N., Duan, Y., et al. (2011). Facial phenotypes in subgroups of pre-pubertal boys with autism spectrum disorders are correlated with clinical phenotypes. Molecular Autism, 2(1), 15.CrossRefPubMedCentralPubMed Aldridge, K., George, I., Cole, K., Austin, J., Takahashi, T. N., Duan, Y., et al. (2011). Facial phenotypes in subgroups of pre-pubertal boys with autism spectrum disorders are correlated with clinical phenotypes. Molecular Autism, 2(1), 15.CrossRefPubMedCentralPubMed
go back to reference American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: APA. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: APA.
go back to reference American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.CrossRef American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.CrossRef
go back to reference Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243–256.CrossRef Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243–256.CrossRef
go back to reference Baird, G., Charman, T., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., et al. (2008). Regression, developmental trajectory and associated problems in disorders in the autism spectrum: The SNAP study. Journal of Autism Development Disorders, 38(10), 1827–1836.CrossRef Baird, G., Charman, T., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., et al. (2008). Regression, developmental trajectory and associated problems in disorders in the autism spectrum: The SNAP study. Journal of Autism Development Disorders, 38(10), 1827–1836.CrossRef
go back to reference Bolshakova, N., & Azuaje, F. (2003). Cluster validation techniques for genome expression data. Signal Processing, 83(4), 825–833.CrossRef Bolshakova, N., & Azuaje, F. (2003). Cluster validation techniques for genome expression data. Signal Processing, 83(4), 825–833.CrossRef
go back to reference Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.CrossRef Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.CrossRef
go back to reference Constantino, J. N., & Gruber, C. P. (2005). Social Responsiveness Scale. Los Angeles, CA: Western Psychological Services. Constantino, J. N., & Gruber, C. P. (2005). Social Responsiveness Scale. Los Angeles, CA: Western Psychological Services.
go back to reference Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(3), 131–156.CrossRef Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(3), 131–156.CrossRef
go back to reference Dudoit, S., & Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3(7), 1–21.CrossRef Dudoit, S., & Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3(7), 1–21.CrossRef
go back to reference Eaves, L. C., Ho, H. H., & Eaves, D. M. (1994). Subtypes of autism by cluster analysis. Journal of Autism and Developmental Disorders, 24(1), 3–22.CrossRefPubMed Eaves, L. C., Ho, H. H., & Eaves, D. M. (1994). Subtypes of autism by cluster analysis. Journal of Autism and Developmental Disorders, 24(1), 3–22.CrossRefPubMed
go back to reference Ewing, J. A. (1984). Detecting alcoholism: The CAGE questionnaire. JAMA: Journal of the American Medical Association, 252, 1905–1907.CrossRefPubMed Ewing, J. A. (1984). Detecting alcoholism: The CAGE questionnaire. JAMA: Journal of the American Medical Association, 252, 1905–1907.CrossRefPubMed
go back to reference Farkas, L. G. (1994). Anthropometry of the head and face in clinical practice. In L. G. Farkas (Ed.), Anthropometry of the head and face (2nd ed., pp. 71–77). New York: Raven Press. Farkas, L. G. (1994). Anthropometry of the head and face in clinical practice. In L. G. Farkas (Ed.), Anthropometry of the head and face (2nd ed., pp. 71–77). New York: Raven Press.
go back to reference Farkas, L. G., & Posnick, J. C. (1992). Growth and development of regional units in the head and face based on anthropometricmeasurements. The Cleft Palate-Craniofacial Journal, 29(4), 301–302.CrossRefPubMed Farkas, L. G., & Posnick, J. C. (1992). Growth and development of regional units in the head and face based on anthropometricmeasurements. The Cleft Palate-Craniofacial Journal, 29(4), 301–302.CrossRefPubMed
go back to reference Fraley, C., & Raftery, A. E. (2000). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97, 611–631.CrossRef Fraley, C., & Raftery, A. E. (2000). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97, 611–631.CrossRef
go back to reference García López, F., García Torres, M., Meliá Batista, B., Moreno Pérez, J. A., & Moreno-Vega, J. M. (2006). Solving feature subset selection problem by a parallel scatter search. European Journal of Operational Research, 169(2), 477–489.CrossRef García López, F., García Torres, M., Meliá Batista, B., Moreno Pérez, J. A., & Moreno-Vega, J. M. (2006). Solving feature subset selection problem by a parallel scatter search. European Journal of Operational Research, 169(2), 477–489.CrossRef
go back to reference Gilani, S. Z., Shafait, F., & Mian, A. (2013). Biologically significant facial landmarks: How significant are they for gender classification? In IEEE international conference on digital image computing: Techniques and Applications (DICTA) (pp. 1–8). Gilani, S. Z., Shafait, F., & Mian, A. (2013). Biologically significant facial landmarks: How significant are they for gender classification? In IEEE international conference on digital image computing: Techniques and Applications (DICTA) (pp. 1–8).
go back to reference Gutlein, M., Frank, E., Hall, M., & Karwath, A. (2009). Large-scale attribute selection using wrappers. IEEE symposium on computational intelligence and data mining CIDM’09, 2009 (pp. 332–339). Gutlein, M., Frank, E., Hall, M., & Karwath, A. (2009). Large-scale attribute selection using wrappers. IEEE symposium on computational intelligence and data mining CIDM’09, 2009 (pp. 332–339).
go back to reference Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Intelligent Information Systems Journal, 17(2–3), 107–145.CrossRef Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Intelligent Information Systems Journal, 17(2–3), 107–145.CrossRef
go back to reference Hamza, A. B., & Krim, H. (2006, August). Geodesic matching of triangulated surfaces. IEEE Transactions on Image Processing, 15(8), 2249–2258. Hamza, A. B., & Krim, H. (2006, August). Geodesic matching of triangulated surfaces. IEEE Transactions on Image Processing, 15(8), 2249–2258.
go back to reference Han, J. C. (1990). Shortest paths on a polyhedron. Sixth annual symposium on Computational geometry, SCG’90, (pp. 360–369). Han, J. C. (1990). Shortest paths on a polyhedron. Sixth annual symposium on Computational geometry, SCG’90, (pp. 360–369).
go back to reference Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 100–108. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 100–108.
go back to reference Jain, A. K. (2010). Data clustering: 50 Years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.CrossRef Jain, A. K. (2010). Data clustering: 50 Years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.CrossRef
go back to reference Jain, A. K., Jianchang, M., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31–44.CrossRef Jain, A. K., Jianchang, M., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31–44.CrossRef
go back to reference Jones, L. A., & Campbell, J. M. (2010). Clinical characteristics associated with language regression for children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(1), 54–62.CrossRefPubMed Jones, L. A., & Campbell, J. M. (2010). Clinical characteristics associated with language regression for children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(1), 54–62.CrossRefPubMed
go back to reference Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.CrossRef Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.CrossRef
go back to reference Kohonen, T. (1998). The Self-organizing maps. Neurocomputing, 21(1), 1–6.CrossRef Kohonen, T. (1998). The Self-organizing maps. Neurocomputing, 21(1), 1–6.CrossRef
go back to reference Kovács, F., Legány, C., & Babos, A. (2005). Cluster validity measurement techniques. 6th International symposium of hungarian researchers on computational intelligence. Kovács, F., Legány, C., & Babos, A. (2005). Cluster validity measurement techniques. 6th International symposium of hungarian researchers on computational intelligence.
go back to reference Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., et al. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69(3), 306–313.CrossRefPubMedCentralPubMed Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., et al. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69(3), 306–313.CrossRefPubMedCentralPubMed
go back to reference Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C, et al. (2000, June). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C, et al. (2000, June). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.
go back to reference Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal Autism Development Disorder, 19, 185–212.CrossRef Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal Autism Development Disorder, 19, 185–212.CrossRef
go back to reference Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism Development Disorder, 24, 659–685.CrossRef Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism Development Disorder, 24, 659–685.CrossRef
go back to reference Miles, J. H. (2011). Autism subgroups from a medical genetics perspective. In Autism spectrum disorders (pp. 705–721). Oxford: Oxford University Press. Miles, J. H. (2011). Autism subgroups from a medical genetics perspective. In Autism spectrum disorders (pp. 705–721). Oxford: Oxford University Press.
go back to reference Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95(4), 339–350.CrossRefPubMed Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95(4), 339–350.CrossRefPubMed
go back to reference Miles, J. H., Takahashi, T. N., Haber, A., & Hadden, L. (2003). Autism families with a high incidence of alcoholism. Journal of Autism and Developmental Disorders, 33(4), 403–415.CrossRefPubMed Miles, J. H., Takahashi, T. N., Haber, A., & Hadden, L. (2003). Autism families with a high incidence of alcoholism. Journal of Autism and Developmental Disorders, 33(4), 403–415.CrossRefPubMed
go back to reference Miles, J. H., Takahashi, T. N., Hong, J., Munden, N., Flournoy, N., Braddock, S. R., et al. (2008). Development and validation of a measure of dysmorphology: Useful for autism subgroup classification. American Journal of Medical Genetics Part A, 146A, 1101–1116.CrossRefPubMed Miles, J. H., Takahashi, T. N., Hong, J., Munden, N., Flournoy, N., Braddock, S. R., et al. (2008). Development and validation of a measure of dysmorphology: Useful for autism subgroup classification. American Journal of Medical Genetics Part A, 146A, 1101–1116.CrossRefPubMed
go back to reference Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem. SIAM Journal Computing, 16(4), 647–668.CrossRef Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem. SIAM Journal Computing, 16(4), 647–668.CrossRef
go back to reference Quynh, D., He, Y., Xin, S.-Q., & Chen, Z. (2012). An intrinsic algorithm to compute geodesic distance fields on triangle meshes with holes, graphical models. Proceedings of Geometric Modeling and Processing GMP’12, 74(4), 209–220. Quynh, D., He, Y., Xin, S.-Q., & Chen, Z. (2012). An intrinsic algorithm to compute geodesic distance fields on triangle meshes with holes, graphical models. Proceedings of Geometric Modeling and Processing GMP’12, 74(4), 209–220.
go back to reference Rousseeuw, P. (1987). Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics, 20, 53–65.CrossRef Rousseeuw, P. (1987). Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics, 20, 53–65.CrossRef
go back to reference Sasson, N. J., Lam, K. S., Parlier, M., Daniels, J. L., & Piven, J. (2013). Autism and the broad autism phenotype: Familial patterns and intergenerational transmission. Journal of Neurodevelopmental Disorders, 5(11). Sasson, N. J., Lam, K. S., Parlier, M., Daniels, J. L., & Piven, J. (2013). Autism and the broad autism phenotype: Familial patterns and intergenerational transmission. Journal of Neurodevelopmental Disorders, 5(11).
go back to reference Sparrow, S., Balla, D., & Cicchetti, D. (1984). Vineland Adaptive Behavior Scales. Circle Pines, MN: American Guidance Service. Sparrow, S., Balla, D., & Cicchetti, D. (1984). Vineland Adaptive Behavior Scales. Circle Pines, MN: American Guidance Service.
go back to reference Stefanatos, G. A. (2008). Regression in autistic spectrum disorders. Neuropsychology Review, 18(4), 305–319.CrossRefPubMed Stefanatos, G. A. (2008). Regression in autistic spectrum disorders. Neuropsychology Review, 18(4), 305–319.CrossRefPubMed
go back to reference Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3), 511–528.CrossRef Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3), 511–528.CrossRef
go back to reference Wade, J. L., Cox, N. B., Reeve, R. E., & Hull, M. (2014). Brief report: Impact of child problem behaviors and parental broad autism phenotype traits on substance use among parents of children with ASD. Journal of Autism and Developmental Disorders, 1–7. Wade, J. L., Cox, N. B., Reeve, R. E., & Hull, M. (2014). Brief report: Impact of child problem behaviors and parental broad autism phenotype traits on substance use among parents of children with ASD. Journal of Autism and Developmental Disorders, 1–7.
go back to reference Wang, K., Wang, B., & Peng, L. (2009). CVAP: Validation for cluster analyses. Data Science Journal, 8, 88–93.CrossRef Wang, K., Wang, B., & Peng, L. (2009). CVAP: Validation for cluster analyses. Data Science Journal, 8, 88–93.CrossRef
go back to reference Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). Los Altos, CA: Morgan Kaufmann. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). Los Altos, CA: Morgan Kaufmann.
go back to reference Xin, S.-Q., Quynh, D., Ying, X., & He, Y. (2012). A global algorithm to compute defect-tolerant geodesic distance. In ACM SIGGRAPH ASIA 2012 Technical Briefs, pp. 1–23. Xin, S.-Q., Quynh, D., Ying, X., & He, Y. (2012). A global algorithm to compute defect-tolerant geodesic distance. In ACM SIGGRAPH ASIA 2012 Technical Briefs, pp. 1–23.
go back to reference Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.CrossRefPubMed Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.CrossRefPubMed
go back to reference Xu, L., Yan, P., & Chang, T. (1988). Best first strategy for feature selection. In Proceedings of ninth international conference on pattern recognition (pp. 706–708). Xu, L., Yan, P., & Chang, T. (1988). Best first strategy for feature selection. In Proceedings of ninth international conference on pattern recognition (pp. 706–708).
Metagegevens
Titel
Facial Structure Analysis Separates Autism Spectrum Disorders into Meaningful Clinical Subgroups
Auteurs
Tayo Obafemi-Ajayi
Judith H. Miles
T. Nicole Takahashi
Wenchuan Qi
Kristina Aldridge
Minqi Zhang
Shi-Qing Xin
Ying He
Ye Duan
Publicatiedatum
01-05-2015
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 5/2015
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-014-2290-8