Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2006

01-07-2006 | Original Article

Face perception: An integrative review of the role of spatial frequencies

Auteurs: Marcos Ruiz-Soler, Francesc S. Beltran

Gepubliceerd in: Psychological Research | Uitgave 4/2006

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The aim of this article is to reinterpret the results obtained from the research analyzing the role played by spatial frequencies in face perception. Two main working lines have been explored in this body of research: the critical bandwidth of spatial frequencies that allows face recognition to take place (the masking approach), and the role played by different spatial frequencies while the visual percept is being developed (the microgenetic approach). However, results obtained to date are not satisfactory in that no single explanation accounts for all the data obtained from each of the approaches. We propose that the main factor for understanding the role of spatial frequencies in face perception depends on the interaction between the demands of the task and the information in the image (the diagnostic recognition approach). Using this new framework, we review the most significant research carried out since the early 1970s to provide a reinterpretation of the data obtained.
Voetnoten
1
In face recognition research, the unit of measure is the number of cycles per face width (cycles/fw), i.e., “the number of sinusoidal repetitions of a given width that can be placed within the eye-level width of the face” (Costen et al., 1996; p. 602). However, some authors give measurements in cycles per degree of visual angle (cycles/degree), and sometimes the information available makes it impossible to provide an exact conversion of cycles/degree into cycles/fw We therefore provide measurements in cycles/fw whenever possible; otherwise, we give them in cycles/degree.
 
2
This framework is also used for some applied proposals. Bhatia et al. (1995) degraded images of faces by pixelization in order to find the minimum image quality required for retrieval of facial records in databases. More recently, Lander, Bruce, and Hill (2001) used both pixelization and blurring to mask the identity of familiar faces in short naturalistic television clips.
 
3
Oliva and Schyns’ (1997) second experiment describes the results of the control group that was exposed to 12 stimuli made up of LSFs and HSFs. Of these 12 subjects, none perceived that there were two scenes in the same stimulus. Surprisingly, four of them were “HSF categorizers,” four were “LSF categorizers,” and four successfully categorized using both types. Since there was no sensitivity phase in this group in order to bias subjects toward LSF or HSF processing, these results are compatible with the interpretation that, in the absence of specific task demands, there are subjects whose preferential strategy is to use LSFs and others whose preferential strategy is to use HSFs.
 
Literatuur
go back to reference Bachmann, T. (1987). Different trends in perceptual pattern microgenesis as a function of the spatial range of local brightness averaging. Psychological Research, 49, 107–111.CrossRefPubMed Bachmann, T. (1987). Different trends in perceptual pattern microgenesis as a function of the spatial range of local brightness averaging. Psychological Research, 49, 107–111.CrossRefPubMed
go back to reference Bachmann, T. (1989). Microgenesis as traced by the transient paired-forms paradigm. Acta Psychologica, 70, 3–17.CrossRefPubMed Bachmann, T. (1989). Microgenesis as traced by the transient paired-forms paradigm. Acta Psychologica, 70, 3–17.CrossRefPubMed
go back to reference Bachmann T. (1991) Identification of spatially quantised tachistoscopic images of faces: How many pixels does it take to carry identity? European Journal of Cognitive Psychology, 3, 87–103. Bachmann T. (1991) Identification of spatially quantised tachistoscopic images of faces: How many pixels does it take to carry identity? European Journal of Cognitive Psychology, 3, 87–103.
go back to reference Bachmann, T., & Kahusk, N. (1997). The effects of coarseness of quantisation, exposure duration, and selective spatial attention on the perception of spatially quantised (“blocked”) visual images. Perception, 26, 1181–1196.PubMed Bachmann, T., & Kahusk, N. (1997). The effects of coarseness of quantisation, exposure duration, and selective spatial attention on the perception of spatially quantised (“blocked”) visual images. Perception, 26, 1181–1196.PubMed
go back to reference Bachmann, T., & Põder, E. (2002). Forward masking of faces with three types of spatially quantised (pixelised) masks: Evidence for configuration microgenesis. Perception, 31 (Suppl), 11–21. Bachmann, T., & Põder, E. (2002). Forward masking of faces with three types of spatially quantised (pixelised) masks: Evidence for configuration microgenesis. Perception, 31 (Suppl), 11–21.
go back to reference Bachmann, T., Luiga, I., & Põder E. (2004) Forward masking of faces by spatially quantized random and structured masks: On the roles of wholistic configuration, local features and spatial-frequency spectra in perceptual identification. Psychological Research, 69 , 11–21.CrossRefPubMed Bachmann, T., Luiga, I., & Põder E. (2004) Forward masking of faces by spatially quantized random and structured masks: On the roles of wholistic configuration, local features and spatial-frequency spectra in perceptual identification. Psychological Research, 69 , 11–21.CrossRefPubMed
go back to reference Barrera, M. E., & Maurer, M. (1981). The perception of facial expressions by the three-month-old. Child Development, 52, 203–206.PubMed Barrera, M. E., & Maurer, M. (1981). The perception of facial expressions by the three-month-old. Child Development, 52, 203–206.PubMed
go back to reference Bhatia, S. K., Lakshminarayanan, V., Samal, A., & Welland G. V. (1995). Human face perception in degraded images. Journal of Visual Communication and Image Representation, 6, 280–295.CrossRef Bhatia, S. K., Lakshminarayanan, V., Samal, A., & Welland G. V. (1995). Human face perception in degraded images. Journal of Visual Communication and Image Representation, 6, 280–295.CrossRef
go back to reference Bruce, V., & Humphreys, G. W. (1994). Recognizing objects and faces. Visual Cognition, 1, 141–180. Bruce, V., & Humphreys, G. W. (1994). Recognizing objects and faces. Visual Cognition, 1, 141–180.
go back to reference Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77, 305–327.PubMed Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77, 305–327.PubMed
go back to reference Burton, A. M., Bruce, V., & Hancock P. J. B. (1999). From pixels to people: A model of familiar face recognition. Cognitive Science, 23, 1–31.CrossRef Burton, A. M., Bruce, V., & Hancock P. J. B. (1999). From pixels to people: A model of familiar face recognition. Cognitive Science, 23, 1–31.CrossRef
go back to reference Calis, G., Sterenborg, J., & Maarse, F. (1984). Initial microgenetic steps in single-glance face recognition. Acta Psychologica, 55, 215–230.CrossRef Calis, G., Sterenborg, J., & Maarse, F. (1984). Initial microgenetic steps in single-glance face recognition. Acta Psychologica, 55, 215–230.CrossRef
go back to reference Coin, C., Versace, R., & Tiberghien, G. (1992). Role of spatial frequencies and exposure duration in face processing: Potential consequences on the memory format of facial representations. Cahiers de Psychologie Cognitive, 1, 79–98. Coin, C., Versace, R., & Tiberghien, G. (1992). Role of spatial frequencies and exposure duration in face processing: Potential consequences on the memory format of facial representations. Cahiers de Psychologie Cognitive, 1, 79–98.
go back to reference Collishaw, S. M., & Hole, G. J. (2000) Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29, 893–909.CrossRefPubMed Collishaw, S. M., & Hole, G. J. (2000) Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29, 893–909.CrossRefPubMed
go back to reference Costen, N. P., Parker, D. M., & Craw, I. (1994). Spatial content and spatial quantisation effects in face recognition. Perception, 23, 129–146.PubMed Costen, N. P., Parker, D. M., & Craw, I. (1994). Spatial content and spatial quantisation effects in face recognition. Perception, 23, 129–146.PubMed
go back to reference Costen, N. P., Shepherd, J. W., Ellis, H. D., & Craw, I. (1994). Masking of faces by facial and non-facial stimuli. Visual Cognition, 1, 227–251. Costen, N. P., Shepherd, J. W., Ellis, H. D., & Craw, I. (1994). Masking of faces by facial and non-facial stimuli. Visual Cognition, 1, 227–251.
go back to reference Costen, N. P., Parker, D. M., & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification. Perception & Psychophysics, 58, 602–612.PubMed Costen, N. P., Parker, D. M., & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification. Perception & Psychophysics, 58, 602–612.PubMed
go back to reference Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4, 2051–2062.PubMed Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4, 2051–2062.PubMed
go back to reference De Valois, R. L., & De Valois, K. K. (1988). Spatial vision. New York: Oxford University Press. De Valois, R. L., & De Valois, K. K. (1988). Spatial vision. New York: Oxford University Press.
go back to reference Ellis, A. W. (1992). Cognitive mechanisms of face processing. Philosophical Transactions of the Royal Society of London B, 335, 113–119. Ellis, A. W. (1992). Cognitive mechanisms of face processing. Philosophical Transactions of the Royal Society of London B, 335, 113–119.
go back to reference Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception of experimental results. Perception & Psychophysics, 25, 249–263.PubMed Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception of experimental results. Perception & Psychophysics, 25, 249–263.PubMed
go back to reference Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: Evidence for a local “association field”. Vision Research, 33, 173–193.CrossRefPubMed Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: Evidence for a local “association field”. Vision Research, 33, 173–193.CrossRefPubMed
go back to reference Fiorentini, A., Maffei, L., & Sandini, G. (1983). The role of high spatial frequencies in face perception. Perception, 12, 195–201.PubMed Fiorentini, A., Maffei, L., & Sandini, G. (1983). The role of high spatial frequencies in face perception. Perception, 12, 195–201.PubMed
go back to reference Gauthier, I., & Logothetis, N. (2000). Is face recognition not so unique after all? Journal of Cognitive Neuropsychology, 17, 125–142.CrossRef Gauthier, I., & Logothetis, N. (2000). Is face recognition not so unique after all? Journal of Cognitive Neuropsychology, 17, 125–142.CrossRef
go back to reference Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research, 37, 1673–1682.CrossRefPubMed Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research, 37, 1673–1682.CrossRefPubMed
go back to reference Gauthier, I., Williams, P., Tarr, M. J., & Tanaka, J. W. (1998). Training “Greeble” experts: A framework for studying expert object recognition processes. Vision Research, 38, 2401–2428.CrossRefPubMed Gauthier, I., Williams, P., Tarr, M. J., & Tanaka, J. W. (1998). Training “Greeble” experts: A framework for studying expert object recognition processes. Vision Research, 38, 2401–2428.CrossRefPubMed
go back to reference Gauthier, I., Behrmann, M., & Tarr, M. J. (1999). Can face recognition really be dissociated from object recognition? Journal of Cognitive Neuroscience, 11, 349–370.CrossRefPubMed Gauthier, I., Behrmann, M., & Tarr, M. J. (1999). Can face recognition really be dissociated from object recognition? Journal of Cognitive Neuroscience, 11, 349–370.CrossRefPubMed
go back to reference Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2, 568–573.CrossRefPubMed Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2, 568–573.CrossRefPubMed
go back to reference Ginsburg, A. P. (1978). Visual information processing based on spatial filters constrained by biological data. Unpublished doctoral dissertation. University of Cambridge, Cambridge. Ginsburg, A. P. (1978). Visual information processing based on spatial filters constrained by biological data. Unpublished doctoral dissertation. University of Cambridge, Cambridge.
go back to reference Gosselin, F., & Schyns, P. G. (2002). RAP: A new framework for visual categorization. Trends in Cognitive Sciences, 6, 70–77.CrossRefPubMed Gosselin, F., & Schyns, P. G. (2002). RAP: A new framework for visual categorization. Trends in Cognitive Sciences, 6, 70–77.CrossRefPubMed
go back to reference Graham, N. V. S. (1989). Visual pattern analyzers. New York: Oxford University Press. Graham, N. V. S. (1989). Visual pattern analyzers. New York: Oxford University Press.
go back to reference Gross, C. G., Bender, D. B., & Rocha-Miranda, C. E. (1969). Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science, 166, 1303–1306.PubMed Gross, C. G., Bender, D. B., & Rocha-Miranda, C. E. (1969). Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science, 166, 1303–1306.PubMed
go back to reference Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35, 96–111.PubMed Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35, 96–111.PubMed
go back to reference Haig, N. D. (1984). The effect of feature displacement on face recognition. Perception, 13, 505–512.PubMed Haig, N. D. (1984). The effect of feature displacement on face recognition. Perception, 13, 505–512.PubMed
go back to reference Harmon, L. D., & Julesz, B. (1973). Masking in visual recognition: Effects of two-dimensional filtered noise. Science, 180, 1194–1197.PubMed Harmon, L. D., & Julesz, B. (1973). Masking in visual recognition: Effects of two-dimensional filtered noise. Science, 180, 1194–1197.PubMed
go back to reference Harvey, L. O., & Sinclair, G. P. (1985). On the quality of visual imagery. Investigative Ophthalmology & Visual Science, 26 (Suppl), 281. Harvey, L. O., & Sinclair, G. P. (1985). On the quality of visual imagery. Investigative Ophthalmology & Visual Science, 26 (Suppl), 281.
go back to reference Hayes, A., Morrone, M. C., & Burr, D. C. (1986). Recognition of positive and negative band-pass filtered images. Perception, 15, 595–602.PubMed Hayes, A., Morrone, M. C., & Burr, D. C. (1986). Recognition of positive and negative band-pass filtered images. Perception, 15, 595–602.PubMed
go back to reference Henning, G. B., Hertz, B. G., & Broadbent, D. E. (1975). Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency. Vision Research, 15, 887–899.CrossRefPubMed Henning, G. B., Hertz, B. G., & Broadbent, D. E. (1975). Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency. Vision Research, 15, 887–899.CrossRefPubMed
go back to reference Hess, R. F., & Dakin, S. C. (1997). Absence of contour linking in peripheral vision. Nature, 390, 602–604.CrossRefPubMed Hess, R. F., & Dakin, S. C. (1997). Absence of contour linking in peripheral vision. Nature, 390, 602–604.CrossRefPubMed
go back to reference Hoeger, R. (1997). Speed of processing and stimulus complexity in low-frequency and high-frequency channels. Perception, 26, 1039–1045.PubMed Hoeger, R. (1997). Speed of processing and stimulus complexity in low-frequency and high-frequency channels. Perception, 26, 1039–1045.PubMed
go back to reference Hole, G. (1994). Configurational factors in the perception of unfamiliar faces. Perception, 23, 65–74.PubMed Hole, G. (1994). Configurational factors in the perception of unfamiliar faces. Perception, 23, 65–74.PubMed
go back to reference Hughes, H. C., Fendrich, R., & Reuter-Lorenz, P. A. (1990). Global versus local processing in the absence of low spatial frequencies. Journal of Cognitive Neuroscience, 2, 272–282. Hughes, H. C., Fendrich, R., & Reuter-Lorenz, P. A. (1990). Global versus local processing in the absence of low spatial frequencies. Journal of Cognitive Neuroscience, 2, 272–282.
go back to reference Hughes, H. C., Nozawa, G., & Kitterle, F. (1996). Global precedence, spatial frequency channels, and the statics of natural images. Journal of Cognitive Neuroscience, 8, 197–230. Hughes, H. C., Nozawa, G., & Kitterle, F. (1996). Global precedence, spatial frequency channels, and the statics of natural images. Journal of Cognitive Neuroscience, 8, 197–230.
go back to reference Ivry, R. B., & Robertson, L. (1998). The two sides of perception. Massachusetts: MIT Press. Ivry, R. B., & Robertson, L. (1998). The two sides of perception. Massachusetts: MIT Press.
go back to reference Keenan, P. A., Whitman, R., & Pepe J. (1989). Hemispheric asymmetry in the processing of high and low spatial frequencies: A facial recognition task. Brain & Cognition, 11, 229–237.CrossRef Keenan, P. A., Whitman, R., & Pepe J. (1989). Hemispheric asymmetry in the processing of high and low spatial frequencies: A facial recognition task. Brain & Cognition, 11, 229–237.CrossRef
go back to reference Keenan, P. A., Whitman, R., & Pepe, J. (1990). Hemispheric asymmetry in the processing of high and low spatial frequencies: A facial recognition task, Erratum. Brain & Cognition, 13, 130. Keenan, P. A., Whitman, R., & Pepe, J. (1990). Hemispheric asymmetry in the processing of high and low spatial frequencies: A facial recognition task, Erratum. Brain & Cognition, 13, 130.
go back to reference Kimchi, R. (1992). Primacy of holistic processing and global/local paradigm. Psychological Bulletin, 112, 24–38.CrossRefPubMed Kimchi, R. (1992). Primacy of holistic processing and global/local paradigm. Psychological Bulletin, 112, 24–38.CrossRefPubMed
go back to reference Kuchuk, A., Vibbert, M., & Bornstein, M.H. (1986). The perception of smiling and its experiential correlates in three-month-old infants. Child Development, 57, 1054–1061.PubMed Kuchuk, A., Vibbert, M., & Bornstein, M.H. (1986). The perception of smiling and its experiential correlates in three-month-old infants. Child Development, 57, 1054–1061.PubMed
go back to reference LaGasse, L. L. (1993). Effects of good form and spatial frequency on global precedence. Perception & Psychophysics, 53, 89–105. LaGasse, L. L. (1993). Effects of good form and spatial frequency on global precedence. Perception & Psychophysics, 53, 89–105.
go back to reference Lander, K., Bruce, V., & Hill, H. (2001). Evaluating the effectiveness of pixelation and blurring on masking the identity of familiar faces.Applied Cognitive Psychology, 15, 101–116.CrossRef Lander, K., Bruce, V., & Hill, H. (2001). Evaluating the effectiveness of pixelation and blurring on masking the identity of familiar faces.Applied Cognitive Psychology, 15, 101–116.CrossRef
go back to reference Liu, C.-H., Collin, C., Rainville, S., & Chaudhuri, A. (2000). The effects of spatial frequency overlap on face recognition. Journal of Experimental Psychology: Human Perception and Performance, 26, 956–979.CrossRef Liu, C.-H., Collin, C., Rainville, S., & Chaudhuri, A. (2000). The effects of spatial frequency overlap on face recognition. Journal of Experimental Psychology: Human Perception and Performance, 26, 956–979.CrossRef
go back to reference Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: Freeman. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: Freeman.
go back to reference Marr, D., & Hildreth, E. C. (1980). Theory of edge detection. Proceedings of the Royal Society of London B, 207, 187–217. Marr, D., & Hildreth, E. C. (1980). Theory of edge detection. Proceedings of the Royal Society of London B, 207, 187–217.
go back to reference Marshall, J. A., Burbeck, C. A., Ariely, J. P., Rolland, J. P., & Martin, K. E. (1996). Occlusion edge blur: A cue to relative visual depth. Journal of the Optical Society of America A, 13, 681–688. Marshall, J. A., Burbeck, C. A., Ariely, J. P., Rolland, J. P., & Martin, K. E. (1996). Occlusion edge blur: A cue to relative visual depth. Journal of the Optical Society of America A, 13, 681–688.
go back to reference McKone, E., Martini, P., & Nakayama, K. (2001). Categorical perception of face identity in noise: A method for isolating configural processing. Journal of Experimental Psychology: Human Perception & Performance, 27, 573–599. McKone, E., Martini, P., & Nakayama, K. (2001). Categorical perception of face identity in noise: A method for isolating configural processing. Journal of Experimental Psychology: Human Perception & Performance, 27, 573–599.
go back to reference McSorley, E., & Findlay, J. M. (1999). An examination of a temporal anisotropy in the visual integration of spatial frequencies. Perception, 28, 1031–1050.PubMed McSorley, E., & Findlay, J. M. (1999). An examination of a temporal anisotropy in the visual integration of spatial frequencies. Perception, 28, 1031–1050.PubMed
go back to reference McSorley, E., & Findlay, J. M. (2002). Are spatial frequencies integrated from coarse to fine? Perception, 31, 955–967.CrossRefPubMed McSorley, E., & Findlay, J. M. (2002). Are spatial frequencies integrated from coarse to fine? Perception, 31, 955–967.CrossRefPubMed
go back to reference Millward, R. B., & O’Toole, A. (1986). Recognition memory transfer between spatial-frequency analyzed faces. In H. D. Ellis, M. A. Jeeves, F. Newcombe, & A. Young (Eds.), Aspects of face processing (pp. 34–44). Dordrecht, The Netherlands: Nijhoff. Millward, R. B., & O’Toole, A. (1986). Recognition memory transfer between spatial-frequency analyzed faces. In H. D. Ellis, M. A. Jeeves, F. Newcombe, & A. Young (Eds.), Aspects of face processing (pp. 34–44). Dordrecht, The Netherlands: Nijhoff.
go back to reference Mondloch, C. J., Lewis, T. L., Budreau, D. R., Maurer, D., Dannemiller, J. L., Stephens, B. R., & Kleiner-Gathercoal, K. A. (1999). Face perception during early infancy. Psychological Science, 10, 419–422.CrossRef Mondloch, C. J., Lewis, T. L., Budreau, D. R., Maurer, D., Dannemiller, J. L., Stephens, B. R., & Kleiner-Gathercoal, K. A. (1999). Face perception during early infancy. Psychological Science, 10, 419–422.CrossRef
go back to reference Morrison, D. J., & Schyns, P. G. (2001). Usage of spatial scales for the categorization of faces, objects, and scenes. Psychonomic Bulletin & Review, 8, 454–469. Morrison, D. J., & Schyns, P. G. (2001). Usage of spatial scales for the categorization of faces, objects, and scenes. Psychonomic Bulletin & Review, 8, 454–469.
go back to reference Nachmias, J., & Weber, A. (1975). Discrimination of simple and complex gratings. Vision Research, 15, 217–223.CrossRefPubMed Nachmias, J., & Weber, A. (1975). Discrimination of simple and complex gratings. Vision Research, 15, 217–223.CrossRefPubMed
go back to reference Nachmias, J., Sansbury, R., Vassiley, A., & Weber A. (1973). Adaptation to square-wave gratings: In search of the elusive third harmonic. Vision Research, 13, 1335–1342.CrossRefPubMed Nachmias, J., Sansbury, R., Vassiley, A., & Weber A. (1973). Adaptation to square-wave gratings: In search of the elusive third harmonic. Vision Research, 13, 1335–1342.CrossRefPubMed
go back to reference Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision Research, 39, 3824–3833.CrossRefPubMed Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision Research, 39, 3824–3833.CrossRefPubMed
go back to reference Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353–383.CrossRef Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353–383.CrossRef
go back to reference Ojanpää, H., & Näsänen, R. (2003). Utilisation of spatial frequency information in face search. Vision Research, 43, 2505–2515.CrossRefPubMed Ojanpää, H., & Näsänen, R. (2003). Utilisation of spatial frequency information in face search. Vision Research, 43, 2505–2515.CrossRefPubMed
go back to reference Oliva, A., & Schyns, P. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107.CrossRefPubMed Oliva, A., & Schyns, P. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107.CrossRefPubMed
go back to reference O’Scalaidhe, S. P., Wilson, F. A. W., & Goldman-Rakic, P. S. (1997). Areal segregation of face-processing neurons in prefrontal cortex. Science, 278, 1135–1138.CrossRefPubMed O’Scalaidhe, S. P., Wilson, F. A. W., & Goldman-Rakic, P. S. (1997). Areal segregation of face-processing neurons in prefrontal cortex. Science, 278, 1135–1138.CrossRefPubMed
go back to reference O’Toole, A., Millward, R. B., & Anderson, J. A. (1988). A physical system approach to recognition memory for spatially transformed faces. Neural Networks, 1, 179–199.CrossRef O’Toole, A., Millward, R. B., & Anderson, J. A. (1988). A physical system approach to recognition memory for spatially transformed faces. Neural Networks, 1, 179–199.CrossRef
go back to reference Parker, D. M., & Costen, N. P. (1999). One extreme or the other or perhaps the golden mean? Issues of spatial resolution in face processing. Current Psychology: Development, Learning, Personality, Social, 18, 118–127. Parker, D. M., & Costen, N. P. (1999). One extreme or the other or perhaps the golden mean? Issues of spatial resolution in face processing. Current Psychology: Development, Learning, Personality, Social, 18, 118–127.
go back to reference Parker, D. M., Lishman, J. R., & Hughes, J. (1992). Temporal integration of spatially filtered visual images. Perception, 21, 147–160.PubMed Parker, D. M., Lishman, J. R., & Hughes, J. (1992). Temporal integration of spatially filtered visual images. Perception, 21, 147–160.PubMed
go back to reference Parker, D. M., Lishman, J. R., & Hughes, J. (1996). Role of coarse and fine spatial information in face and object processing. Journal of Experimental Psychology: Human Perception and Performance, 22, 1448–1466.CrossRef Parker, D. M., Lishman, J. R., & Hughes, J. (1996). Role of coarse and fine spatial information in face and object processing. Journal of Experimental Psychology: Human Perception and Performance, 22, 1448–1466.CrossRef
go back to reference Parker, D. M., Lishman, J. R., & Hughes, J. (1997). Evidence for the view that temporospatial integration in vision is temporally anisotropic. Perception, 26, 1169–1180.PubMed Parker, D. M., Lishman, J. R., & Hughes, J. (1997). Evidence for the view that temporospatial integration in vision is temporally anisotropic. Perception, 26, 1169–1180.PubMed
go back to reference Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999.CrossRefPubMed Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999.CrossRefPubMed
go back to reference Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions. Vision Research, 34, 73–78.CrossRefPubMed Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions. Vision Research, 34, 73–78.CrossRefPubMed
go back to reference Rakover, S. S., & Cahlon, B. (2001). Face recognition: Cognitive and computational processes. Amsterdam: Benjamins. Rakover, S. S., & Cahlon, B. (2001). Face recognition: Cognitive and computational processes. Amsterdam: Benjamins.
go back to reference Rolls E.T. (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. In V. Bruce, A. Cowey, W. Ellis, & D. I. Perrett (Eds.), Processing the facial image (pp. 11–21). Oxford: Oxford University Press. Rolls E.T. (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. In V. Bruce, A. Cowey, W. Ellis, & D. I. Perrett (Eds.), Processing the facial image (pp. 11–21). Oxford: Oxford University Press.
go back to reference Ruiz-Soler, M., López, E., Pelegrina, M., Videra, A., & Wallace, A. (2000). Face recognition and response criterion: Moderating effects of cognitive style. Paper presented at XXVII International Congress of Psychology, Stockholm, Sweden. Ruiz-Soler, M., López, E., Pelegrina, M., Videra, A., & Wallace, A. (2000). Face recognition and response criterion: Moderating effects of cognitive style. Paper presented at XXVII International Congress of Psychology, Stockholm, Sweden.
go back to reference Sanocki, T. (1993). Time course of object identification: Evidence for a global-to-local contingency. Journal of Experimental Psychology: Human Perception and Performance, 19, 878–898.CrossRef Sanocki, T. (1993). Time course of object identification: Evidence for a global-to-local contingency. Journal of Experimental Psychology: Human Perception and Performance, 19, 878–898.CrossRef
go back to reference Schyns, P. G. (1998). Diagnostic recognition: Task constraints, object information and their interactions. Cognition, 67, 147–179.CrossRefPubMed Schyns, P. G. (1998). Diagnostic recognition: Task constraints, object information and their interactions. Cognition, 67, 147–179.CrossRefPubMed
go back to reference Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale dependent scene recognition. Psychological Science, 5, 195–200. Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale dependent scene recognition. Psychological Science, 5, 195–200.
go back to reference Schyns, P., & Oliva, A. (1997). Flexible diagnosticity, rather than fixed, perceptually determined scale selection in scene and face recognition. Perception, 26, 1027–1038.PubMed Schyns, P., & Oliva, A. (1997). Flexible diagnosticity, rather than fixed, perceptually determined scale selection in scene and face recognition. Perception, 26, 1027–1038.PubMed
go back to reference Schyns, P. G., & Oliva, A. (1999). Dr Angry and Mr Smile: When categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition, 69, 243–265.CrossRefPubMed Schyns, P. G., & Oliva, A. (1999). Dr Angry and Mr Smile: When categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition, 69, 243–265.CrossRefPubMed
go back to reference Sergent, J. (1984). An investigation into component and configural processes underlying face perception. British Journal of Psychology, 75, 221–242.PubMed Sergent, J. (1984). An investigation into component and configural processes underlying face perception. British Journal of Psychology, 75, 221–242.PubMed
go back to reference Sergent, J. (1985). Influence of task and input factors on hemispheric involvement in face processing. Journal of Experimental Psychology: Human Perception and Performance, 11, 846–861.CrossRef Sergent, J. (1985). Influence of task and input factors on hemispheric involvement in face processing. Journal of Experimental Psychology: Human Perception and Performance, 11, 846–861.CrossRef
go back to reference Sergent, J. (1986). Microgenesis in face perception. In H. D. Ellis, M. A. Jeeves, F. Newcombe, & A. Young (Eds.), Aspects of face processing (pp. 17–73). Dordrecht, The Netherlands: Nijhoff. Sergent, J. (1986). Microgenesis in face perception. In H. D. Ellis, M. A. Jeeves, F. Newcombe, & A. Young (Eds.), Aspects of face processing (pp. 17–73). Dordrecht, The Netherlands: Nijhoff.
go back to reference Sergent, J. (1994). Brain-imaging studies of cognitive functions. Trends in Neurosciences, 17, 221–227.CrossRefPubMed Sergent, J. (1994). Brain-imaging studies of cognitive functions. Trends in Neurosciences, 17, 221–227.CrossRefPubMed
go back to reference Smith, M. L., Gosselin, F., & Schyns, P. G. (2004). Receptive fields for flexible face categorizations. Psychological Science, 15, 753–761.CrossRefPubMed Smith, M. L., Gosselin, F., & Schyns, P. G. (2004). Receptive fields for flexible face categorizations. Psychological Science, 15, 753–761.CrossRefPubMed
go back to reference Tanaka, J., & Farah, M. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 46A, 225–245. Tanaka, J., & Farah, M. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 46A, 225–245.
go back to reference Tieger, T., & Ganz, L. (1979). Recognition of faces in the presence of two-dimensional sinusoidal masks. Perception & Psychophysics, 26, 163–167. Tieger, T., & Ganz, L. (1979). Recognition of faces in the presence of two-dimensional sinusoidal masks. Perception & Psychophysics, 26, 163–167.
go back to reference Tolhurst, D. J., & Barfield, L. P. (1978). Interactions between spatial frequency channels. Vision Research, 18, 951–958.CrossRefPubMed Tolhurst, D. J., & Barfield, L. P. (1978). Interactions between spatial frequency channels. Vision Research, 18, 951–958.CrossRefPubMed
go back to reference Tong, F., & Nakayama, K. (1999). Robust representation for faces: evidence from visual research. Journal of Experimental Psychology: Human Perception and Performance, 25, 1016–1035.CrossRef Tong, F., & Nakayama, K. (1999). Robust representation for faces: evidence from visual research. Journal of Experimental Psychology: Human Perception and Performance, 25, 1016–1035.CrossRef
go back to reference Uttal, W. R., Baruch, T., & Allen L. (1997). A parametric study of face recognition when image degradations are combined. Spatial Vision, 11, 179–204.PubMed Uttal, W. R., Baruch, T., & Allen L. (1997). A parametric study of face recognition when image degradations are combined. Spatial Vision, 11, 179–204.PubMed
go back to reference Watt, R. J. (1987). Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. Journal of Optical Society of America A, 4, 2006–2021. Watt, R. J. (1987). Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. Journal of Optical Society of America A, 4, 2006–2021.
go back to reference Watt, R. J. (1988). Visual processing: Computational, psychophysical and cognitive research. London: Erlbaum. Watt, R. J. (1988). Visual processing: Computational, psychophysical and cognitive research. London: Erlbaum.
go back to reference Wenger, M. J., & Townsend, J. T. (2000). Spatial frequencies in short-term memory for faces: A test of three frequency-dependent hypotheses. Memory & Cognition, 28, 125–142. Wenger, M. J., & Townsend, J. T. (2000). Spatial frequencies in short-term memory for faces: A test of three frequency-dependent hypotheses. Memory & Cognition, 28, 125–142.
go back to reference Young, A. W., Hellawell, D., & Hay D. C. (1987). Configurational information in face perception. Perception, 16, 747–759.PubMed Young, A. W., Hellawell, D., & Hay D. C. (1987). Configurational information in face perception. Perception, 16, 747–759.PubMed
Metagegevens
Titel
Face perception: An integrative review of the role of spatial frequencies
Auteurs
Marcos Ruiz-Soler
Francesc S. Beltran
Publicatiedatum
01-07-2006
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2006
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-005-0215-z

Andere artikelen Uitgave 4/2006

Psychological Research 4/2006 Naar de uitgave