TODO: Skip to main content
Top
Gepubliceerd in:

07-01-2025 | Original Paper

Exploring Machine Learning to Support Decision-Making for Placement Stabilization and Preservation in Child Welfare

Auteurs: Ka Ho Brian Chor, Zhidi Luo, Kit T. Rodolfa, Rayid Ghani

Gepubliceerd in: Journal of Child and Family Studies | Uitgave 1/2025

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The Family First Prevention Services Act requires youth’s placement in residential care to be clinically appropriate, time-limited, and only when youth’s needs cannot be met in family-like settings in foster care. State child welfare agencies can benefit from upstream, empirical decision support to preempt youth’s placement disruption, coordinate proactive placement stabilization services, prevent unnecessary step-up to residential care, and improve outcomes for the youth. This statewide case study explores the potential benefit to child welfare decision support for placement stabilization and diversion from residential care, by comparing predictive machine learning (ML) models with conventional regression models. We analyzed child welfare spells of 12,621 youth in one large Midwestern state between January 2017 and January 2020. Caseworkers could refer youth to a placement stabilization and preservation program. To predict youth’s monthly program need in the next 6 months, we developed and validated a wide grid of ML models—random forest, regularized logistic regression, decision tree, dummy classifier—and a conventional unregularized logistic regression model, using literature-informed predictors from child welfare administrative data. We retrained, retested, and compared all models over time using temporal hold-out sets. Based on anticipated program capacity, model evaluation focused on accuracy in identifying the 100 highest-need youth, fairness, and equity of resource allocation. Random forest models produced the best performance with a precision (positive predictive value) 10 times greater than baseline precision. Common important predictors across models included youth’s age, history of placement changes, and emotional/behavioral needs. We discuss potential applications of ML to support preventive child welfare decisions, adapt to policy changes, and allocate limited resources.
Bijlagen
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Literatuur
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Metagegevens
Titel
Exploring Machine Learning to Support Decision-Making for Placement Stabilization and Preservation in Child Welfare
Auteurs
Ka Ho Brian Chor
Zhidi Luo
Kit T. Rodolfa
Rayid Ghani
Publicatiedatum
07-01-2025
Uitgeverij
Springer US
Gepubliceerd in
Journal of Child and Family Studies / Uitgave 1/2025
Print ISSN: 1062-1024
Elektronisch ISSN: 1573-2843
DOI
https://doi.org/10.1007/s10826-024-02993-x