Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2021

27-09-2019 | Review

Executive Functions and Visual-Spatial Skills Predict Mathematical Achievement: Asymmetrical Associations Across Age

Auteurs: Tobias Kahl, Alexander Grob, Robin Segerer, Wenke Möhring

Gepubliceerd in: Psychological Research | Uitgave 1/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Children’s mathematical achievement depends on their domain-specific abilities and their domain-general skills such as executive functions (EFs) and visual-spatial skills (VSS). Research indicates that these two domain-general skills predict mathematical achievement. However, it is unclear whether these skills are differently associated with mathematical achievement across a large age range. The current cross-sectional study answered this question using a large, representative sample aged 5–20 years (N = 1754). EFs, VSS, and mathematical achievement were assessed using the Intelligence and Development Scales–2. Hierarchical regression analyses were computed with EFs and VSS as predictor variables and mathematical achievement as dependent variable. We examined (non-) linear effects and interactions of EFs and VSS with age. Results indicated that EFs and VSS were distinctly associated with mathematical achievement above and beyond effects of age, sex, maternal education, and verbal reasoning. Effects of EFs were linear and age-invariant. Effects of VSS were curvilinear and stronger in adolescents than in children. Our results indicated that EFs and VSS related differently to mathematical proficiency across age, suggesting a varying impact on mathematics across age.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
According to the instructions, the task was stopped when participants answered incorrectly in five subsequent items. Consequently, in some subjects, the termination of the test could also have been caused by geometry items. In order to achieve a complete correction of the test results with regard to the contributions of the geometry items, we estimated latent mathematical ability scores based on a two-parametric item-response model with the data of the completed math items only. We excluded all geometry items from the model. In this latent variable approach, the interaction term VSS*age showed a tendency (p = 0.057). The size of the effect, however, appears only slightly reduced as compared to the analyses with geometry items (βwithout geometry = 0.057 vs. βwith geometry = 0.070). 
 
Literatuur
go back to reference Archibald, S. J., & Kerns, K. A. (1999). Identification and description of new tests of executive functioning in children. Child Neuropsychology, 5, 115–129.CrossRef Archibald, S. J., & Kerns, K. A. (1999). Identification and description of new tests of executive functioning in children. Child Neuropsychology, 5, 115–129.CrossRef
go back to reference Baird, K. (2012). Class in the classroom: the relationship between school resources and math performance among low socioeconomic status students in 19 rich countries. Education Economics, 20(5), 484–509.CrossRef Baird, K. (2012). Class in the classroom: the relationship between school resources and math performance among low socioeconomic status students in 19 rich countries. Education Economics, 20(5), 484–509.CrossRef
go back to reference Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. New York: Guilford Publications. Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. New York: Guilford Publications.
go back to reference Di Stefano, C., Zhu, M., & Mîndrilă, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1–11. Di Stefano, C., Zhu, M., & Mîndrilă, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1–11.
go back to reference Erziehungsdirektoren-Konferenz (D-EDK) (2013). Lehrplan 21, Mathematik (Konsultationsfassung). Luzern: D-EDK Erziehungsdirektoren-Konferenz (D-EDK) (2013). Lehrplan 21, Mathematik (Konsultationsfassung). Luzern: D-EDK
go back to reference Field, A. (2013). Discovering Statistics Using SPSS (4th ed.). London: SAGE. Field, A. (2013). Discovering Statistics Using SPSS (4th ed.). London: SAGE.
go back to reference Grob, A., & Hagmann-von Arx, P. (2018). Intelligence and developmental Scales—2 (IDS-2). Bern: Hogrefe. Grob, A., & Hagmann-von Arx, P. (2018). Intelligence and developmental Scales—2 (IDS-2). Bern: Hogrefe.
go back to reference Grob, A., Meyer, C. S., & Hagmann-von Arx, P. (2009). Intelligence and Development Scales (IDS). Bern: Huber. Grob, A., Meyer, C. S., & Hagmann-von Arx, P. (2009). Intelligence and Development Scales (IDS). Bern: Huber.
go back to reference Gross, J., Hudson, C., & Price, D. (2009). The Long Term Costs of Numeracy Difficulties. London: Every Child a Chance Trust. Gross, J., Hudson, C., & Price, D. (2009). The Long Term Costs of Numeracy Difficulties. London: Every Child a Chance Trust.
go back to reference Hagmann-von Arx, P., Meyer, C. S., & Grob, A. (2008). Assessing intellectual giftedness with the WISC-IV and the IDS. Journal of Psychology, 216, 173–180. Hagmann-von Arx, P., Meyer, C. S., & Grob, A. (2008). Assessing intellectual giftedness with the WISC-IV and the IDS. Journal of Psychology, 216, 173–180.
go back to reference Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2018). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 1–23. Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2018). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 1–23.
go back to reference Holmes, J., & Adams, J. W. (2006). Working Memory and Children’s Mathematical Skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339–366.CrossRef Holmes, J., & Adams, J. W. (2006). Working Memory and Children’s Mathematical Skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339–366.CrossRef
go back to reference Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology, 86(1), 148–161.CrossRef Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology, 86(1), 148–161.CrossRef
go back to reference Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamaki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20, 65–76. Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamaki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20, 65–76.
go back to reference LeFevre, J.-A., Fast, L., Skwarchuk, S.-L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767.CrossRef LeFevre, J.-A., Fast, L., Skwarchuk, S.-L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767.CrossRef
go back to reference Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 59–80.CrossRef Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 59–80.CrossRef
go back to reference Levine, S. C., Dulaney, A., Lourenco, S. F., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. WIREs Cognitive Science, 7, 127–155.CrossRef Levine, S. C., Dulaney, A., Lourenco, S. F., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. WIREs Cognitive Science, 7, 127–155.CrossRef
go back to reference Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.CrossRef Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.CrossRef
go back to reference Levine, S. C., Vasilyeva, M., Lourenco, S., Newcombe, N., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845.CrossRef Levine, S. C., Vasilyeva, M., Lourenco, S., Newcombe, N., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845.CrossRef
go back to reference Markey, S. M. (2010). The relationship between visual-spatial reasoning ability and math and geometry problem solving. Dissertation Abstracts International: Section B: The Sciences and Engineering, 70, 7874. Markey, S. M. (2010). The relationship between visual-spatial reasoning ability and math and geometry problem solving. Dissertation Abstracts International: Section B: The Sciences and Engineering, 70, 7874.
go back to reference Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). The latent structure of spatial skills and mathematics across development: Highly correlated but separate domains. JEP General, 145(9), 1206–1227. Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). The latent structure of spatial skills and mathematics across development: Highly correlated but separate domains. JEP General, 145(9), 1206–1227.
go back to reference Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.CrossRef Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.CrossRef
go back to reference O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690.CrossRef O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690.CrossRef
go back to reference Peng, P., Wang, T., Wang, C., & Lin, X. (2018). A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145, 189–236.CrossRef Peng, P., Wang, T., Wang, C., & Lin, X. (2018). A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145, 189–236.CrossRef
go back to reference Röthlisberger, M., Neuenschwander, R., Michel, E., & Roebers, M. (2010). Exekutive Funktionen: Zugrundeliegende kognitive Prozesse und deren Korrelate bei Kindern im späten Vorschulalter. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 42(2), 99–110.CrossRef Röthlisberger, M., Neuenschwander, R., Michel, E., & Roebers, M. (2010). Exekutive Funktionen: Zugrundeliegende kognitive Prozesse und deren Korrelate bei Kindern im späten Vorschulalter. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 42(2), 99–110.CrossRef
go back to reference Van de Weijer-Bergsma, E., Kroesbergen, E., & Van Luit, J. H. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & Cognition, 43, 367–368.CrossRef Van de Weijer-Bergsma, E., Kroesbergen, E., & Van Luit, J. H. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & Cognition, 43, 367–368.CrossRef
go back to reference Wechsler, D. (2003). Wechsler Intelligence Scale for Children (4th ed.). San Antonio: The Psychological Corporation. Wechsler, D. (2003). Wechsler Intelligence Scale for Children (4th ed.). San Antonio: The Psychological Corporation.
Metagegevens
Titel
Executive Functions and Visual-Spatial Skills Predict Mathematical Achievement: Asymmetrical Associations Across Age
Auteurs
Tobias Kahl
Alexander Grob
Robin Segerer
Wenke Möhring
Publicatiedatum
27-09-2019
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2021
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-019-01249-4

Andere artikelen Uitgave 1/2021

Psychological Research 1/2021 Naar de uitgave