Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2009

01-11-2009 | Original Article

Electrophysiological evidence for cognitive control during conflict processing in visual spatial attention

Auteurs: Stefanie Kehrer, Antje Kraft, Kerstin Irlbacher, Stefan P. Koch, Herbert Hagendorf, Norbert Kathmann, Stephan A. Brandt

Gepubliceerd in: Psychological Research | Uitgave 6/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Event-related potentials were measured to investigate the role of visual spatial attention mechanisms in conflict processing. We suggested that a more difficult target selection leads to stronger attentional top-down control, thereby reducing the effects of arising conflicts. This hypothesis was tested by varying the selection difficulty in a location negative priming (NP) paradigm. The difficult task resulted in prolonged responses as compared to the easy task. A behavioral NP effect was only evident in the easy task. Psychophysiologically the easy task was associated with reduced parietal N1, enhanced frontocentral N2 and N2pc components and a prolonged P3 latency for the conflict as compared to the control condition. The N2pc effect was also obvious in the difficult task. Additionally frontocentral N2 amplitudes increased and latencies of N2pc and P3 were delayed compared to the easy task. The differences at frontocentral and parietal electrodes are consistent with previous studies ascribing activity in the prefrontal and parietal cortex as the source of top-down attentional control. Thus, we propose that stronger cognitive control is involved in the difficult task, resulting in a reduced behavioral NP conflict.
Voetnoten
1
In contrast to location NP subjects have to respond to the identity instead of the location of a target in identity NP. In the literature exists a broad diversity between identity and location NP for both behavioral and neurophysiological data (e.g. Connelly & Hasher, 1993; Tipper, Bourque, Anderson & Brehaut, 1989; Mayr, Niedeggen, Buchner & Pietrowsky, 2003; Egner & Hirsch, 2005; Vink, Kahn, Raemaekers & Ramsey, 2005; Gibbons, 2006; Gibbons, Rammsayer & Stahl, 2006; Kathmann, Bogdahn & Endrass 2006; Ruge & Naumann, 2006; Wright et al., 2006; Frings & Groh-Bordin, 2007; Krueger, Fischer, Heinecke & Hagendorf, 2007). For example it could be shown that schizophrenic patients show no or reduced location NP whereas identity NP is not impaired (Hoenig, Hochrein, Müller & Wagner, 2002). Due to these findings and because we are interested in the mechanisms of the visual spatial mechanisms of conflict processing we will focus on results concerning location NP.
 
Literatuur
go back to reference Awh, E., Matsukura, M., & Serences, J. T. (2003). Top-down control over biased competition during covert spatial orienting. Journal of Experimental Psychology. Human Perception and Performance, 29, 52–63.PubMedCrossRef Awh, E., Matsukura, M., & Serences, J. T. (2003). Top-down control over biased competition during covert spatial orienting. Journal of Experimental Psychology. Human Perception and Performance, 29, 52–63.PubMedCrossRef
go back to reference Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 11, 179–181.CrossRef Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 11, 179–181.CrossRef
go back to reference Brisson, B., Robitaille, N., & Jolicoeur, P. (2007). Stimulus intensity affects the latency but not the amplitude of the N2pc. Neuroreport, 18, 1627–1630.PubMedCrossRef Brisson, B., Robitaille, N., & Jolicoeur, P. (2007). Stimulus intensity affects the latency but not the amplitude of the N2pc. Neuroreport, 18, 1627–1630.PubMedCrossRef
go back to reference Castel, A. D., Pratt, J., Chasteen, A. L., & Scialfa, C. T. (2005). Examining task difficulty and the time course of inhibition of return: detecting perceptually degraded targets. Canadian Journal of Experimental Psychology, 59, 90–98.PubMed Castel, A. D., Pratt, J., Chasteen, A. L., & Scialfa, C. T. (2005). Examining task difficulty and the time course of inhibition of return: detecting perceptually degraded targets. Canadian Journal of Experimental Psychology, 59, 90–98.PubMed
go back to reference Christie, J., & Klein, R. M. (2001). Negative priming for spatial location? Canadian Journal of Experimental Psychology, 55, 24–38.PubMed Christie, J., & Klein, R. M. (2001). Negative priming for spatial location? Canadian Journal of Experimental Psychology, 55, 24–38.PubMed
go back to reference Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the stroop effect. Psychological Review, 97, 332–361.PubMedCrossRef Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the stroop effect. Psychological Review, 97, 332–361.PubMedCrossRef
go back to reference Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage, 37, 343–360.PubMedCrossRef Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage, 37, 343–360.PubMedCrossRef
go back to reference Connelly, S. L., & Hasher, L. (1993). Aging and the inhibition of spatial location. Journal of Experimental Psychology. Human Perception and Performance, 19, 1238–1250.PubMedCrossRef Connelly, S. L., & Hasher, L. (1993). Aging and the inhibition of spatial location. Journal of Experimental Psychology. Human Perception and Performance, 19, 1238–1250.PubMedCrossRef
go back to reference Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.PubMedCrossRef Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.PubMedCrossRef
go back to reference de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806.PubMedCrossRef de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806.PubMedCrossRef
go back to reference Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMedCrossRef Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMedCrossRef
go back to reference Egner, T., & Hirsch, J. (2005). Where memory meets attention: neural substrates of negative priming. Journal of Cognitive Neuroscience, 17, 1774–1784.PubMedCrossRef Egner, T., & Hirsch, J. (2005). Where memory meets attention: neural substrates of negative priming. Journal of Cognitive Neuroscience, 17, 1774–1784.PubMedCrossRef
go back to reference Eimer, M. (1994). An ERP study on visual spatial priming with peripheral onsets. Psychophysiology, 31, 154–163.PubMedCrossRef Eimer, M. (1994). An ERP study on visual spatial priming with peripheral onsets. Psychophysiology, 31, 154–163.PubMedCrossRef
go back to reference Falkenstein, M., Hoorman, J., & Hohnsbein, J. (1999). ERP components in Go/NoGo tasks and their relation to inhibition. Acta Psychologica, 101, 267–291.PubMedCrossRef Falkenstein, M., Hoorman, J., & Hohnsbein, J. (1999). ERP components in Go/NoGo tasks and their relation to inhibition. Acta Psychologica, 101, 267–291.PubMedCrossRef
go back to reference Fischer, R., & Hagendorf, H. (2006). The control of visual attention and its influence on prioritized processing in location negative priming. Psychological Research, 70, 317–335.PubMedCrossRef Fischer, R., & Hagendorf, H. (2006). The control of visual attention and its influence on prioritized processing in location negative priming. Psychological Research, 70, 317–335.PubMedCrossRef
go back to reference Folstein, J. R., & van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170.PubMedCrossRef Folstein, J. R., & van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170.PubMedCrossRef
go back to reference Frings, C., & Groh-Bordin, C. (2007). Electrophysiological correlates of visual identity negative priming. Brain Research, 1176, 82–91.PubMedCrossRef Frings, C., & Groh-Bordin, C. (2007). Electrophysiological correlates of visual identity negative priming. Brain Research, 1176, 82–91.PubMedCrossRef
go back to reference Frings, C., & Wühr, P. (2007). Prime-display offset modulates negative priming only for easy-selection tasks. Memory & Cognition, 35, 504–513. Frings, C., & Wühr, P. (2007). Prime-display offset modulates negative priming only for easy-selection tasks. Memory & Cognition, 35, 504–513.
go back to reference Gamboz, N., Russo, R., & Fox, E. (2000). Target selection difficulty, negative priming, and aging. Psychology and Aging, 15, 542–550.PubMedCrossRef Gamboz, N., Russo, R., & Fox, E. (2000). Target selection difficulty, negative priming, and aging. Psychology and Aging, 15, 542–550.PubMedCrossRef
go back to reference Gibbons, H. (2006). An event-related potential investigation of varieties of negative priming. Journal of Psychophysiology, 20, 170–185.CrossRef Gibbons, H. (2006). An event-related potential investigation of varieties of negative priming. Journal of Psychophysiology, 20, 170–185.CrossRef
go back to reference Gibbons, H., Rammsayer, T. H., & Stahl, J. (2006). Multiple sources of positive- and negative-priming effects: An event-related potential study. Memory & Cognition, 34, 172–186. Gibbons, H., Rammsayer, T. H., & Stahl, J. (2006). Multiple sources of positive- and negative-priming effects: An event-related potential study. Memory & Cognition, 34, 172–186.
go back to reference Gomez-Gonzalez, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 41–51.PubMedCrossRef Gomez-Gonzalez, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 41–51.PubMedCrossRef
go back to reference Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484.PubMedCrossRef Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484.PubMedCrossRef
go back to reference Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. PNAS USA, 95, 781–787.PubMedCrossRef Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. PNAS USA, 95, 781–787.PubMedCrossRef
go back to reference Hillyard, S. A., & Mangun, G. R. (1986). The neural basis of visual selective attention: a commentary on Harter and Aine. Biological Psychology, 23, 265–279.PubMedCrossRef Hillyard, S. A., & Mangun, G. R. (1986). The neural basis of visual selective attention: a commentary on Harter and Aine. Biological Psychology, 23, 265–279.PubMedCrossRef
go back to reference Hillyard, S. A., & Munte, T. F. (1984). Selective attention to color and location: an analysis with event-related brain potentials. Perception & Psychophysics, 36, 185–198. Hillyard, S. A., & Munte, T. F. (1984). Selective attention to color and location: an analysis with event-related brain potentials. Perception & Psychophysics, 36, 185–198.
go back to reference Hoenig, K., Hochrein, A., Müller, D. J., & Wagner, M. (2002). Different negative priming impairments in schizophrenia and subgroups of obsessive-compulsive disorder. Psychological Medicine, 32, 459–468.PubMedCrossRef Hoenig, K., Hochrein, A., Müller, D. J., & Wagner, M. (2002). Different negative priming impairments in schizophrenia and subgroups of obsessive-compulsive disorder. Psychological Medicine, 32, 459–468.PubMedCrossRef
go back to reference Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.PubMedCrossRef Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.PubMedCrossRef
go back to reference Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 53–112). San Diego: Academic Press. Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 53–112). San Diego: Academic Press.
go back to reference Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex. Neuropsychologia, 39, 1263–1276.PubMedCrossRef Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex. Neuropsychologia, 39, 1263–1276.PubMedCrossRef
go back to reference Kathmann, N., Bogdahn, B., & Endrass, T. (2006). Event-related brain potential variations during location and identity negative priming. Neuroscience Letters, 394, 53–56.PubMedCrossRef Kathmann, N., Bogdahn, B., & Endrass, T. (2006). Event-related brain potential variations during location and identity negative priming. Neuroscience Letters, 394, 53–56.PubMedCrossRef
go back to reference Kerns, J. G., Cohen, J. D., MacDonald, A. W, 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 13, 1023–1026.CrossRef Kerns, J. G., Cohen, J. D., MacDonald, A. W, 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 13, 1023–1026.CrossRef
go back to reference Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99, 19–27.PubMedCrossRef Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99, 19–27.PubMedCrossRef
go back to reference Krueger, F., Fischer, R., Heinecke, A., & Hagendorf, H. (2007). An fMRI investigation into the neural mechanisms of spatial attentional selection in a location-based negative priming task. Brain Research, 1174, 110–119.PubMedCrossRef Krueger, F., Fischer, R., Heinecke, A., & Hagendorf, H. (2007). An fMRI investigation into the neural mechanisms of spatial attentional selection in a location-based negative priming task. Brain Research, 1174, 110–119.PubMedCrossRef
go back to reference Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology. Human Perception and Performance, 21, 451–468.PubMedCrossRef Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology. Human Perception and Performance, 21, 451–468.PubMedCrossRef
go back to reference Lavie, N., & Fox, E. (2000). The role of perceptual load in negative priming. Journal of Experimental Psychology. Human Perception and Performance, 26, 1038–1052.PubMedCrossRef Lavie, N., & Fox, E. (2000). The role of perceptual load in negative priming. Journal of Experimental Psychology. Human Perception and Performance, 26, 1038–1052.PubMedCrossRef
go back to reference Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64–87.PubMedCrossRef Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64–87.PubMedCrossRef
go back to reference Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 20, 1000–1014.PubMedCrossRef Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 20, 1000–1014.PubMedCrossRef
go back to reference Lupiáñez, J., & Milliken, B. (1999). Inhibition of return and the attentional set for integrating versus differentiating information. Journal of General Psychology, 126, 392–418.PubMedCrossRef Lupiáñez, J., & Milliken, B. (1999). Inhibition of return and the attentional set for integrating versus differentiating information. Journal of General Psychology, 126, 392–418.PubMedCrossRef
go back to reference Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology. Human Perception and Performance, 17, 1057–1074.PubMedCrossRef Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology. Human Perception and Performance, 17, 1057–1074.PubMedCrossRef
go back to reference Mayr, S., Niedeggen, M., Buchner, A., & Pietrowsky, R. (2003). ERP correlates of auditory negative priming. Cognition, 90, 11–21.CrossRef Mayr, S., Niedeggen, M., Buchner, A., & Pietrowsky, R. (2003). ERP correlates of auditory negative priming. Cognition, 90, 11–21.CrossRef
go back to reference Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRef Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRef
go back to reference Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35, 99–115.PubMedCrossRef Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35, 99–115.PubMedCrossRef
go back to reference Milliken, B., Tipper, S. P., Houghton, G., & Lupiáñez, J. (2000). Attending, ignoring, and repetition: On the relation between negative priming and inhibition of return. Perception & Psychophysics, 62, 1280–1296. Milliken, B., Tipper, S. P., Houghton, G., & Lupiáñez, J. (2000). Attending, ignoring, and repetition: On the relation between negative priming and inhibition of return. Perception & Psychophysics, 62, 1280–1296.
go back to reference Neill, W. T., & Valdes, L. A. (1992). Persistence of negative priming: Steady state or decay? Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 565–576.CrossRef Neill, W. T., & Valdes, L. A. (1992). Persistence of negative priming: Steady state or decay? Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 565–576.CrossRef
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRef Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRef
go back to reference Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: Identity mismatching, not distractor inhibition. Journal of Experimental Psychology. Human Perception and Performance, 20, 613–623.PubMedCrossRef Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: Identity mismatching, not distractor inhibition. Journal of Experimental Psychology. Human Perception and Performance, 20, 613–623.PubMedCrossRef
go back to reference Paus, T., Koski, L., Caramanos, Z., & Westbury, C. (1998). Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport, 9, 37–47.CrossRef Paus, T., Koski, L., Caramanos, Z., & Westbury, C. (1998). Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport, 9, 37–47.CrossRef
go back to reference Posner, M.I., & Cohen, Y. (1984). Components of visual orienting, In H. Bouma & D. Bouwhuis (Eds.), Attention and performance X, London: Erlbaum, 25, 229–242. Posner, M.I., & Cohen, Y. (1984). Components of visual orienting, In H. Bouma & D. Bouwhuis (Eds.), Attention and performance X, London: Erlbaum, 25, 229–242.
go back to reference Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: Conflict, target detection, and cognitive control. In R. Parasuraman (Ed.), The Attentive Brain: MIT Press. Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: Conflict, target detection, and cognitive control. In R. Parasuraman (Ed.), The Attentive Brain: MIT Press.
go back to reference Posner, M. I., & Rothbart, M. K. (1998). Attention, self regulation and consciousness. Philosophical Transactions of the Royal Society of London B, 353, 1915–1927.CrossRef Posner, M. I., & Rothbart, M. K. (1998). Attention, self regulation and consciousness. Philosophical Transactions of the Royal Society of London B, 353, 1915–1927.CrossRef
go back to reference Prime, D. J., & Ward, L. M. (2004). Inhibition of return from stimulus to response. Psychological Science, 15, 272–276.PubMedCrossRef Prime, D. J., & Ward, L. M. (2004). Inhibition of return from stimulus to response. Psychological Science, 15, 272–276.PubMedCrossRef
go back to reference Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278, 1616–1619.PubMedCrossRef Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278, 1616–1619.PubMedCrossRef
go back to reference Ruge, H., & Naumann, E. (2006). Brain-Electrical Correlates of Negative Location Priming Under Sustained and Transient Attentional Context Conditions. Journal of Psychophysiology, 20, 160–169.CrossRef Ruge, H., & Naumann, E. (2006). Brain-Electrical Correlates of Negative Location Priming Under Sustained and Transient Attentional Context Conditions. Journal of Psychophysiology, 20, 160–169.CrossRef
go back to reference Shedden, J. M., & Nordgaard, C. L. (2001). ERP time course of perceptual and post-perceptual mechanisms of spatial selection. Cognitive Brain Research, 11, 59–75.PubMedCrossRef Shedden, J. M., & Nordgaard, C. L. (2001). ERP time course of perceptual and post-perceptual mechanisms of spatial selection. Cognitive Brain Research, 11, 59–75.PubMedCrossRef
go back to reference Tipper, S. P. (1985). The negative priming effect: inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, A, 37, 571–590. Tipper, S. P. (1985). The negative priming effect: inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, A, 37, 571–590.
go back to reference Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflic-ting views. The Quarterly Journal of Experimental Psychology, A, 54, 321–343.CrossRef Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflic-ting views. The Quarterly Journal of Experimental Psychology, A, 54, 321–343.CrossRef
go back to reference Tipper, S. P., Bourque, T. A., Anderson, S. H., & Brehaut, J. C. (1989). Mechanisms of attention: a developmental study. Journal of Experimental Child Psychology, 48, 353–378.PubMedCrossRef Tipper, S. P., Bourque, T. A., Anderson, S. H., & Brehaut, J. C. (1989). Mechanisms of attention: a developmental study. Journal of Experimental Child Psychology, 48, 353–378.PubMedCrossRef
go back to reference van Veen, V., & Carter, C. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology Behavior, 77, 477–482.PubMedCrossRef van Veen, V., & Carter, C. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology Behavior, 77, 477–482.PubMedCrossRef
go back to reference van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: a functional MRI study. NeuroImage, 27, 497–504.PubMedCrossRef van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: a functional MRI study. NeuroImage, 27, 497–504.PubMedCrossRef
go back to reference Vink, M., Kahn, R. S., Raemaekers, M., & Ramsey, N. F. (2005). Perceptual bias following visual target selection. NeuroImage, 25, 1168–1174.PubMedCrossRef Vink, M., Kahn, R. S., Raemaekers, M., & Ramsey, N. F. (2005). Perceptual bias following visual target selection. NeuroImage, 25, 1168–1174.PubMedCrossRef
go back to reference Wang, Y., Cui, L., Wang, H., Tian, S., & Zhang, X. (2004). The sequential processing of visual feature conjunction mismatches in the human brain. Psychophysiology, 41, 21–29.PubMedCrossRef Wang, Y., Cui, L., Wang, H., Tian, S., & Zhang, X. (2004). The sequential processing of visual feature conjunction mismatches in the human brain. Psychophysiology, 41, 21–29.PubMedCrossRef
go back to reference Weissman, D. H., Warner, L. M., & Woldorff, M. G. (2004). The neural mechanisms for minimizing cross-modal distraction. Journal of Neuroscience, 1, 10941–10949.CrossRef Weissman, D. H., Warner, L. M., & Woldorff, M. G. (2004). The neural mechanisms for minimizing cross-modal distraction. Journal of Neuroscience, 1, 10941–10949.CrossRef
go back to reference West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739–748.PubMedCrossRef West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739–748.PubMedCrossRef
go back to reference Wright, C. I., Keuthen, N. J., Savage, C. R., Martis, B., Williams, D., Wedig, M., et al. (2006). Brain correlates of negative and positive visuospatial priming in adults. NeuroImage, 15, 983–991.CrossRef Wright, C. I., Keuthen, N. J., Savage, C. R., Martis, B., Williams, D., Wedig, M., et al. (2006). Brain correlates of negative and positive visuospatial priming in adults. NeuroImage, 15, 983–991.CrossRef
go back to reference Yeung, N., Botvinick, M. W., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.PubMedCrossRef Yeung, N., Botvinick, M. W., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.PubMedCrossRef
Metagegevens
Titel
Electrophysiological evidence for cognitive control during conflict processing in visual spatial attention
Auteurs
Stefanie Kehrer
Antje Kraft
Kerstin Irlbacher
Stefan P. Koch
Herbert Hagendorf
Norbert Kathmann
Stephan A. Brandt
Publicatiedatum
01-11-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 6/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-008-0194-y

Andere artikelen Uitgave 6/2009

Psychological Research 6/2009 Naar de uitgave