Skip to main content
Top
Gepubliceerd in:

04-05-2023 | Original Paper

Eigenvector Centrality Characterization on fMRI Data: Gender and Node Differences in Normal and ASD Subjects

Author name

Auteur: Papri Saha

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 7/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

With the budding interests of structural and functional network characteristics as potential parameters for abnormal brains, an essential and thus simpler representation and evaluations have become necessary. Eigenvector centrality measure of functional magnetic resonance imaging (fMRI) offer region wise network representations through fMRI diagnostic maps. The article investigates the suitability of network node centrality values to discriminate ASD subject groups compared to typically developing controls following a boxplot formalism and a classification and regression tree model. Region wise differences between normal and ASD subjects primarily belong to the frontoparietal, limbic, ventral attention, default mode and visual networks. The reduced number of regions-of-interests (ROI) clearly suggests the benefit of automated supervised machine learning algorithm over the manual classification method.
Literatuur
go back to reference Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal Of Neuroscience, 26(1), 63–72.CrossRefPubMed Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal Of Neuroscience, 26(1), 63–72.CrossRefPubMed
go back to reference Andrews, D. S., et al. (2019). A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord, 11, 32.CrossRefPubMedPubMedCentral Andrews, D. S., et al. (2019). A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord, 11, 32.CrossRefPubMedPubMedCentral
go back to reference Binnewijzend, M. A. A., Adriaanse, S. M., Van der Flier, W. M., Teunissen, C. E., de Munck, J. C., Stam, C. J., et al. (2014). Brain network alterations in Alzheimer’s disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Human Brain Mapping, 35, 2383–2393. https://doi.org/10.1002/hbm.22335.CrossRefPubMed Binnewijzend, M. A. A., Adriaanse, S. M., Van der Flier, W. M., Teunissen, C. E., de Munck, J. C., Stam, C. J., et al. (2014). Brain network alterations in Alzheimer’s disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Human Brain Mapping, 35, 2383–2393. https://​doi.​org/​10.​1002/​hbm.​22335.CrossRefPubMed
go back to reference Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29, 555–564.CrossRef Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29, 555–564.CrossRef
go back to reference Blum, K., & Chen, A. (2008). Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatric Disease And Treatment, 4, 893–918.PubMedPubMedCentral Blum, K., & Chen, A. (2008). Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatric Disease And Treatment, 4, 893–918.PubMedPubMedCentral
go back to reference Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1983). Classification and regression trees. Belmont, Ca: Wadsworth. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1983). Classification and regression trees. Belmont, Ca: Wadsworth.
go back to reference Clark, L. A., & Pregibon, D. (1992). Tree-based models. In J.M. Chambers and T.J. Hastie, editors, Statistical Models in S, Wadsworth and Brooks/Cole, Pacific Grove, Ca. Clark, L. A., & Pregibon, D. (1992). Tree-based models. In J.M. Chambers and T.J. Hastie, editors, Statistical Models in S, Wadsworth and Brooks/Cole, Pacific Grove, Ca.
go back to reference Costa, L. F., Oliveira, O. N., Travieso, G., Ro- drogues, F. A., Boas, P. R. V., Antiqueira, L., Viana, M. P., & Rocha, L. E. C. (2011). Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Advances in Physics, 60(3), 329–412.CrossRef Costa, L. F., Oliveira, O. N., Travieso, G., Ro- drogues, F. A., Boas, P. R. V., Antiqueira, L., Viana, M. P., & Rocha, L. E. C. (2011). Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Advances in Physics, 60(3), 329–412.CrossRef
go back to reference Courchesne, E. (2002). Abnormal early brain development in autism. Mol Psychiatry. 7(Suppl 2), S21–S23. Courchesne, E. (2002). Abnormal early brain development in autism. Mol Psychiatry. 7(Suppl 2), S21–S23.
go back to reference Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2009). The backbone of the climate network. Europhysics Letters, 87(4), 48007.CrossRef Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2009). The backbone of the climate network. Europhysics Letters, 87(4), 48007.CrossRef
go back to reference dos santos Siqueira, A., Biazoli Junior, C. E., Comfort, W. E., Rohde, L. A., & Sato, J. R. (2014). Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. Biomed Research International, 2014, 1–10. https://doi.org/10.1155/2014/380531.CrossRef dos santos Siqueira, A., Biazoli Junior, C. E., Comfort, W. E., Rohde, L. A., & Sato, J. R. (2014). Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. Biomed Research International, 2014, 1–10. https://​doi.​org/​10.​1155/​2014/​380531.CrossRef
go back to reference Ecker, C., Bookheimer, S. Y., & Murphy, D. G. (2015). Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurology, 14, 1121–1134.CrossRefPubMed Ecker, C., Bookheimer, S. Y., & Murphy, D. G. (2015). Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurology, 14, 1121–1134.CrossRefPubMed
go back to reference Fagiolo, G., Reyes, J., & Schiavo, S. (2009). World-trade web: topological properties, dynamics, and evolution. Physical Review E, 79(3), 036115.CrossRef Fagiolo, G., Reyes, J., & Schiavo, S. (2009). World-trade web: topological properties, dynamics, and evolution. Physical Review E, 79(3), 036115.CrossRef
go back to reference Findley, S. (2003). Age limits and adolescents. Paediatrics & Child Health, 8, 577–578.CrossRef Findley, S. (2003). Age limits and adolescents. Paediatrics & Child Health, 8, 577–578.CrossRef
go back to reference Gadad, B. S., Hewitson, L., Young, K. A., & German, D. C. (2013). Neuropathology and animal models of autism: genetic and environmental factors. Autism Res Treat. 2013, 731935. Gadad, B. S., Hewitson, L., Young, K. A., & German, D. C. (2013). Neuropathology and animal models of autism: genetic and environmental factors. Autism Res Treat. 2013, 731935.
go back to reference Goldberg, M. C., Mostofsky, S. H., Cutting, L. E., Mahone, E. M., Astor, B. C., Denckla, M. B., et al. (2005). Subtle executive impairment in children with autism and children with ADHD. Journal of Autism and Developmental Disorders, 35, 279–293.CrossRefPubMed Goldberg, M. C., Mostofsky, S. H., Cutting, L. E., Mahone, E. M., Astor, B. C., Denckla, M. B., et al. (2005). Subtle executive impairment in children with autism and children with ADHD. Journal of Autism and Developmental Disorders, 35, 279–293.CrossRefPubMed
go back to reference Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences. 102(22), 7794–7799. Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences. 102(22), 7794–7799.
go back to reference Horwitz, B., Rumsey, J. M., Grady, C. L., & Rapoport, S. I. (1988). The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Archives Of Neurology, 45, 749–755.CrossRefPubMed Horwitz, B., Rumsey, J. M., Grady, C. L., & Rapoport, S. I. (1988). The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Archives Of Neurology, 45, 749–755.CrossRefPubMed
go back to reference Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain, 129, 2484–2493.CrossRefPubMed Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain, 129, 2484–2493.CrossRefPubMed
go back to reference Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B., Froehlich, A. L., Nielsen, J. A., Cariello, A. N., Zielinski, B. A., Anderson, J. S., Fletcher, P. T., Alexander, A. A., & Lainhart, J. E. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Research, 8, 82–93.CrossRefPubMed Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B., Froehlich, A. L., Nielsen, J. A., Cariello, A. N., Zielinski, B. A., Anderson, J. S., Fletcher, P. T., Alexander, A. A., & Lainhart, J. E. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Research, 8, 82–93.CrossRefPubMed
go back to reference Lee, J. K., et al. (2020). ). Sex differences in the amygdala resting-state connectome of children with Autism Spectrum Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging, 5, 320–329.PubMed Lee, J. K., et al. (2020). ). Sex differences in the amygdala resting-state connectome of children with Autism Spectrum Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging, 5, 320–329.PubMed
go back to reference Libero, L. E., DeRamus, T. P., Deshpande, H. D., & Kana, R. K. (2014). Surface-based morphometry of the cortical architecture of autism spectrum disorders: volume, thickness, area, and gyrification. Neuropsychologia, 62, 1–10.CrossRefPubMed Libero, L. E., DeRamus, T. P., Deshpande, H. D., & Kana, R. K. (2014). Surface-based morphometry of the cortical architecture of autism spectrum disorders: volume, thickness, area, and gyrification. Neuropsychologia, 62, 1–10.CrossRefPubMed
go back to reference Lorberboym, M., Watemberg, N., Nissenkorn, A., Nir, B., & Lerman-Sagie, T. (2004). Technetium 99m ethylcysteinate dimer single-photon emission computed tomography (SPECT) during intellectual stress test in children and adolescents with pure. Journal Of Child Neurology, 19, 91–96.CrossRefPubMed Lorberboym, M., Watemberg, N., Nissenkorn, A., Nir, B., & Lerman-Sagie, T. (2004). Technetium 99m ethylcysteinate dimer single-photon emission computed tomography (SPECT) during intellectual stress test in children and adolescents with pure. Journal Of Child Neurology, 19, 91–96.CrossRefPubMed
go back to reference Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24, 16–31.CrossRefPubMedPubMedCentral Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24, 16–31.CrossRefPubMedPubMedCentral
go back to reference Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the Gini Index and Information Gain Criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77–93.CrossRef Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the Gini Index and Information Gain Criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77–93.CrossRef
go back to reference Schaer, M., Ottet, M. C., Scariati, E., Dukes, D., Franchini, M., Eliez, S., & Glaser, B. (2013). Decreased frontal gyrification correlates with altered connectivity in children with autism. Frontiers In Human Neuroscience, 7, 750.CrossRefPubMedPubMedCentral Schaer, M., Ottet, M. C., Scariati, E., Dukes, D., Franchini, M., Eliez, S., & Glaser, B. (2013). Decreased frontal gyrification correlates with altered connectivity in children with autism. Frontiers In Human Neuroscience, 7, 750.CrossRefPubMedPubMedCentral
go back to reference Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., Pierce, K., Hagler, D., Schork, N., Lord, C., & Courchesne, E. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal Of Neuroscience, 30, 4419–4427.CrossRefPubMed Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., Pierce, K., Hagler, D., Schork, N., Lord, C., & Courchesne, E. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal Of Neuroscience, 30, 4419–4427.CrossRefPubMed
go back to reference Siqueira, A. S., Junior, C. E. B., Comfort, W. E., Rohde, L. A., & Sato, J. R. (2014). Abnormal Functional Resting-State Networks in ADHD: Graph Theory and Pattern Recognition Analysis of fMRI Data. Biomed Res Int. 2014, 380531. doi: https://doi.org/10.1155/2014/380531 Siqueira, A. S., Junior, C. E. B., Comfort, W. E., Rohde, L. A., & Sato, J. R. (2014). Abnormal Functional Resting-State Networks in ADHD: Graph Theory and Pattern Recognition Analysis of fMRI Data. Biomed Res Int. 2014, 380531. doi: https://​doi.​org/​10.​1155/​2014/​380531
go back to reference Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers In Human Neuroscience, 7, 458.CrossRefPubMedPubMedCentral Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers In Human Neuroscience, 7, 458.CrossRefPubMedPubMedCentral
go back to reference Wallace, G. L., Robustelli, B., Dankner, N., Kenworthy, L., Giedd, J. N., & Martin, A. (2013). Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders. Brain, 136, 1956–1967.CrossRefPubMedPubMedCentral Wallace, G. L., Robustelli, B., Dankner, N., Kenworthy, L., Giedd, J. N., & Martin, A. (2013). Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders. Brain, 136, 1956–1967.CrossRefPubMedPubMedCentral
go back to reference Wang, A. T., Lee, S. S., Sigman, M., & Dapretto, M. (2006). Neural basis of irony comprehension in children with autism: the role of prosody and context. Brain, 129, 932–943.CrossRefPubMed Wang, A. T., Lee, S. S., Sigman, M., & Dapretto, M. (2006). Neural basis of irony comprehension in children with autism: the role of prosody and context. Brain, 129, 932–943.CrossRefPubMed
Metagegevens
Titel
Eigenvector Centrality Characterization on fMRI Data: Gender and Node Differences in Normal and ASD Subjects
Author name
Auteur
Papri Saha
Publicatiedatum
04-05-2023
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 7/2024
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-023-05922-x