Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2020

16-08-2018 | Original Article

Effects of pitch and tempo of auditory rhythms on spontaneous movement entrainment and stabilisation

Auteurs: Manuel Varlet, Rohan Williams, Peter E. Keller

Gepubliceerd in: Psychological Research | Uitgave 3/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Human movements spontaneously entrain to auditory rhythms, which can help to stabilise movements in time and space. The properties of auditory rhythms supporting the occurrence of this phenomenon, however, remain largely unclear. Here, we investigate in two experiments the effects of pitch and tempo on spontaneous movement entrainment and stabilisation. We examined spontaneous entrainment of hand-held pendulum swinging in time with low-pitched (100 Hz) and high-pitched (1600 Hz) metronomes to test whether low pitch favours movement entrainment and stabilisation. To investigate whether stimulation and movement tempi moderate these effects of pitch, we manipulated (1) participants’ preferred movement tempo by varying pendulum mechanical constraints (Experiment 1) and (2) stimulation tempo, which was either equal to, or slightly slower or faster (± 10%) than the participant’s preferred movement tempo (Experiment 2). The results showed that participants’ movements spontaneously entrained to auditory rhythms, and that this effect was stronger with low-pitched rhythms independently of stimulation and movement tempi. Results also indicated that auditory rhythms can lead to increased movement amplitude and stabilisation of movement tempo and amplitude, particularly when low-pitched. However, stabilisation effects were found to depend on intrinsic movement variability. Auditory rhythms decreased movement variability of individuals with higher intrinsic variability but increased movement variability of individuals with lower intrinsic variability. These findings provide new insights into factors that influence auditory–motor entrainment and how they may be optimised to enhance movement efficiency.
Literatuur
go back to reference Bardy, B. G., Hoffmann, C. P., Moens, B., Leman, M., & Dalla Bella, S. (2015). Sound-induced stabilization of breathing and moving. Annals of the New York Academy of Sciences, 1337, 94–100.PubMedCrossRef Bardy, B. G., Hoffmann, C. P., Moens, B., Leman, M., & Dalla Bella, S. (2015). Sound-induced stabilization of breathing and moving. Annals of the New York Academy of Sciences, 1337, 94–100.PubMedCrossRef
go back to reference Batschelet, E. (1981). Circular statistics in biology (Vol. 371). London: Academic Press. Batschelet, E. (1981). Circular statistics in biology (Vol. 371). London: Academic Press.
go back to reference Boersma, P., & Weenink, D. (2014). Praat: Doing phonetics by computer (Version 5. 3. 79) [Computer program]. Boersma, P., & Weenink, D. (2014). Praat: Doing phonetics by computer (Version 5. 3. 79) [Computer program].
go back to reference Boltz, M. G. (2011). Illusory tempo changes due to musical characteristics. Music Perception, 28, 367–386.CrossRef Boltz, M. G. (2011). Illusory tempo changes due to musical characteristics. Music Perception, 28, 367–386.CrossRef
go back to reference Bood, R. J., Nijssen, M., Van Der Kamp, J., & Roerdink, M. (2013). The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats. PloS One, 8, e70758.PubMedPubMedCentralCrossRef Bood, R. J., Nijssen, M., Van Der Kamp, J., & Roerdink, M. (2013). The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats. PloS One, 8, e70758.PubMedPubMedCentralCrossRef
go back to reference Broze, Y., & Huron, D. (2013). Is higher music faster? Pitch–speed relationships in Western compositions. Music Perception, 31, 19–31.CrossRef Broze, Y., & Huron, D. (2013). Is higher music faster? Pitch–speed relationships in Western compositions. Music Perception, 31, 19–31.CrossRef
go back to reference Burger, B., Thompson, M. R., Luck, G., Saarikallio, S., & Toiviainen, P. (2013). Influences of rhythm-and timbre-related musical features on characteristics of music-induced movement. Frontiers in Psychology, 4, 183.PubMedPubMedCentralCrossRef Burger, B., Thompson, M. R., Luck, G., Saarikallio, S., & Toiviainen, P. (2013). Influences of rhythm-and timbre-related musical features on characteristics of music-induced movement. Frontiers in Psychology, 4, 183.PubMedPubMedCentralCrossRef
go back to reference Burger, B., Thompson, M. R., Luck, G., Saarikallio, S. H., & Toiviainen, P. (2014). Hunting for the beat in the body: on period and phase locking in music-induced movement. Frontiers in Human Neuroscience, 8, 903.PubMedPubMedCentralCrossRef Burger, B., Thompson, M. R., Luck, G., Saarikallio, S. H., & Toiviainen, P. (2014). Hunting for the beat in the body: on period and phase locking in music-induced movement. Frontiers in Human Neuroscience, 8, 903.PubMedPubMedCentralCrossRef
go back to reference Coey, C. A., Varlet, M., & Richardson, M. J. (2012). Coordination dynamics in a socially situated nervous system. Frontiers in Human Neuroscience, 6, 164.PubMedPubMedCentralCrossRef Coey, C. A., Varlet, M., & Richardson, M. J. (2012). Coordination dynamics in a socially situated nervous system. Frontiers in Human Neuroscience, 6, 164.PubMedPubMedCentralCrossRef
go back to reference Coey, C. A., Varlet, M., Schmidt, R. C., & Richardson, M. J. (2011). Effects of movement stability and congruency on the emergence of spontaneous interpersonal coordination. Experimental Brain Research, 211, 483–493.PubMedCrossRef Coey, C. A., Varlet, M., Schmidt, R. C., & Richardson, M. J. (2011). Effects of movement stability and congruency on the emergence of spontaneous interpersonal coordination. Experimental Brain Research, 211, 483–493.PubMedCrossRef
go back to reference Collier, W. G., & Hubbard, T. L. (2004). Musical scales and brightness evaluations: effects of pitch, direction, and scale mode. Musicae Scientiae, 8, 151–173.CrossRef Collier, W. G., & Hubbard, T. L. (2004). Musical scales and brightness evaluations: effects of pitch, direction, and scale mode. Musicae Scientiae, 8, 151–173.CrossRef
go back to reference Demos, A. P., Chaffin, R., Begosh, K. T., Daniels, J. R., & Marsh, K. L. (2012). Rocking to the beat: Effects of music and partner’s movements on spontaneous interpersonal coordination. Journal of Experimental Psychology: General, 141, 49–53.CrossRef Demos, A. P., Chaffin, R., Begosh, K. T., Daniels, J. R., & Marsh, K. L. (2012). Rocking to the beat: Effects of music and partner’s movements on spontaneous interpersonal coordination. Journal of Experimental Psychology: General, 141, 49–53.CrossRef
go back to reference Dotov, D. G., Bayard, S., de Cock, V. C., Geny, C., Driss, V., Garrigue, G., Bardy, B., & Bella, D., S (2017). Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson’s disease. Gait and Posture, 51, 64–69.PubMedCrossRef Dotov, D. G., Bayard, S., de Cock, V. C., Geny, C., Driss, V., Garrigue, G., Bardy, B., & Bella, D., S (2017). Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson’s disease. Gait and Posture, 51, 64–69.PubMedCrossRef
go back to reference Eitan, Z., & Granot, R. Y. (2006). How music moves: Musical parameters and images of motion. Music Perception, 23, 221–247.CrossRef Eitan, Z., & Granot, R. Y. (2006). How music moves: Musical parameters and images of motion. Music Perception, 23, 221–247.CrossRef
go back to reference Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), The psychology of music (pp. 149–180). Orlando: Academic Press.CrossRef Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), The psychology of music (pp. 149–180). Orlando: Academic Press.CrossRef
go back to reference Fuchs, A., Jirsa, V. K., Haken, H., & Kelso, J. S. (1996). Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biological Cybernetics, 74, 21–30.PubMedCrossRef Fuchs, A., Jirsa, V. K., Haken, H., & Kelso, J. S. (1996). Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biological Cybernetics, 74, 21–30.PubMedCrossRef
go back to reference Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. Journal of Neuroscience, 32, 1791–1802.PubMedCrossRef Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. Journal of Neuroscience, 32, 1791–1802.PubMedCrossRef
go back to reference Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2005). Automatic encoding of polyphonic melodies in musicians and nonmusicians. Journal of Cognitive Neuroscience, 17, 1578–1592.PubMedCrossRef Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2005). Automatic encoding of polyphonic melodies in musicians and nonmusicians. Journal of Cognitive Neuroscience, 17, 1578–1592.PubMedCrossRef
go back to reference Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.PubMedCrossRef Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.PubMedCrossRef
go back to reference Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.PubMedCrossRef Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.PubMedCrossRef
go back to reference Hove, M. J., & Keller, P. E. (2015). Impaired movement timing in neurological disorders: rehabilitation and treatment strategies. Annals of the New York Academy of Sciences, 1337, 111–117.PubMedPubMedCentralCrossRef Hove, M. J., & Keller, P. E. (2015). Impaired movement timing in neurological disorders: rehabilitation and treatment strategies. Annals of the New York Academy of Sciences, 1337, 111–117.PubMedPubMedCentralCrossRef
go back to reference Hove, M. J., Keller, P. E., & Krumhansl, C. L. (2007). Sensorimotor synchronization with chords containing tone-onset asynchronies. Attention, Perception, and Psychophysics, 69, 699–708.CrossRef Hove, M. J., Keller, P. E., & Krumhansl, C. L. (2007). Sensorimotor synchronization with chords containing tone-onset asynchronies. Attention, Perception, and Psychophysics, 69, 699–708.CrossRef
go back to reference Hove, M. J., Marie, C., Bruce, I. C., & Trainor, L. J. (2014). Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proceedings of the National Academy of Sciences of the United States of America, 111, 10383–10388.PubMedPubMedCentralCrossRef Hove, M. J., Marie, C., Bruce, I. C., & Trainor, L. J. (2014). Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proceedings of the National Academy of Sciences of the United States of America, 111, 10383–10388.PubMedPubMedCentralCrossRef
go back to reference Keller, P. E., & Repp, B. H. (2005). Staying offbeat: Sensorimotor syncopation with structured and unstructured auditory sequences. Psychological Research Psychologische Forschung, 69, 292–309.PubMedCrossRef Keller, P. E., & Repp, B. H. (2005). Staying offbeat: Sensorimotor syncopation with structured and unstructured auditory sequences. Psychological Research Psychologische Forschung, 69, 292–309.PubMedCrossRef
go back to reference Keller, P. E., & Rieger, M. (2009). Special issue - Musical movement and synchronization. Music Perception: An Interdisciplinary Journal, 26, 397–400.CrossRef Keller, P. E., & Rieger, M. (2009). Special issue - Musical movement and synchronization. Music Perception: An Interdisciplinary Journal, 26, 397–400.CrossRef
go back to reference Kelso, J. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT press. Kelso, J. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT press.
go back to reference Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movement. Routledge. Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movement. Routledge.
go back to reference Large, E. W. (2000). On synchronizing movements to music. Human Movement Science, 19, 527–566.CrossRef Large, E. W. (2000). On synchronizing movements to music. Human Movement Science, 19, 527–566.CrossRef
go back to reference Large, E. W. (2008). Resonating to musical rhythm: Theory and experiment. In S. Grondin (Ed.), The psychology of time (pp. 189–231). Cambridge: Emerald. Large, E. W. (2008). Resonating to musical rhythm: Theory and experiment. In S. Grondin (Ed.), The psychology of time (pp. 189–231). Cambridge: Emerald.
go back to reference Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.CrossRef Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.CrossRef
go back to reference Leman, M., Moelants, D., Varewyck, M., Styns, F., van Noorden, L., & Martens, J. P. (2013). Activating and relaxing music entrains the speed of beat synchronized walking. PloS One, 8, e67932.PubMedPubMedCentralCrossRef Leman, M., Moelants, D., Varewyck, M., Styns, F., van Noorden, L., & Martens, J. P. (2013). Activating and relaxing music entrains the speed of beat synchronized walking. PloS One, 8, e67932.PubMedPubMedCentralCrossRef
go back to reference Lenc, T., Keller, P. E., Varlet, M., & Nozaradan, S. (2018). Neural tracking of the musical beat is enhanced by low-frequency sounds. Proceedings of the National Academy of Sciences of the United States of America, 115, 8221–8226.PubMedPubMedCentralCrossRef Lenc, T., Keller, P. E., Varlet, M., & Nozaradan, S. (2018). Neural tracking of the musical beat is enhanced by low-frequency sounds. Proceedings of the National Academy of Sciences of the United States of America, 115, 8221–8226.PubMedPubMedCentralCrossRef
go back to reference Leow, L. A., Parrott, T., & Grahn, J. A. (2014). Individual differences in beat perception affect gait responses to low-and high-groove music. Frontiers in Human Neuroscience, 8, 811.PubMedPubMedCentralCrossRef Leow, L. A., Parrott, T., & Grahn, J. A. (2014). Individual differences in beat perception affect gait responses to low-and high-groove music. Frontiers in Human Neuroscience, 8, 811.PubMedPubMedCentralCrossRef
go back to reference Lim, I., van Wegen, E., de Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., Jones, D., Rochester, L., & Kwakkel, G. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clinical Rehabilitation, 19, 695–713.PubMedCrossRef Lim, I., van Wegen, E., de Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., Jones, D., Rochester, L., & Kwakkel, G. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clinical Rehabilitation, 19, 695–713.PubMedCrossRef
go back to reference Lopresti-Goodman, S. M., Richardson, M. J., Silva, P. L., & Schmidt, R. C. (2008). Period basin of entrainment for unintentional visual coordination. Journal of Motor Behavior, 40, 3–10.PubMedCrossRef Lopresti-Goodman, S. M., Richardson, M. J., Silva, P. L., & Schmidt, R. C. (2008). Period basin of entrainment for unintentional visual coordination. Journal of Motor Behavior, 40, 3–10.PubMedCrossRef
go back to reference MacDougall, H. G., & Moore, S. T. (2005). Marching to the beat of the same drummer: the spontaneous tempo of human locomotion. Journal of Applied Physiology, 99, 1164–1173.PubMedCrossRef MacDougall, H. G., & Moore, S. T. (2005). Marching to the beat of the same drummer: the spontaneous tempo of human locomotion. Journal of Applied Physiology, 99, 1164–1173.PubMedCrossRef
go back to reference Malcolm, M. P., Massie, C., & Thaut, M. (2009). Rhythmic auditory-motor entrainment improves hemiparetic arm kinematics during reaching movements: a pilot study. Topics in Stroke Rehabilitation, 16, 69–79.PubMedCrossRef Malcolm, M. P., Massie, C., & Thaut, M. (2009). Rhythmic auditory-motor entrainment improves hemiparetic arm kinematics during reaching movements: a pilot study. Topics in Stroke Rehabilitation, 16, 69–79.PubMedCrossRef
go back to reference Marie, C., & Trainor, L. J. (2013). Development of simultaneous pitch encoding: infants show a high voice superiority effect. Cerebral Cortex, 23, 690–669.CrossRef Marie, C., & Trainor, L. J. (2013). Development of simultaneous pitch encoding: infants show a high voice superiority effect. Cerebral Cortex, 23, 690–669.CrossRef
go back to reference McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 62, 22–26.PubMedCrossRefPubMedCentral McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 62, 22–26.PubMedCrossRefPubMedCentral
go back to reference Moelants, D. (2002). Preferred tempo reconsidered. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, and J. Renwick (Ed.), Proceedings of the 7th international conference on music perception and cognition (pp. 580–583). Adelaide: Causal Production. Moelants, D. (2002). Preferred tempo reconsidered. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, and J. Renwick (Ed.), Proceedings of the 7th international conference on music perception and cognition (pp. 580–583). Adelaide: Causal Production.
go back to reference Moore, B. C., Glasberg, B. R., & Baer, T. (1997). A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society, 45, 224–240. Moore, B. C., Glasberg, B. R., & Baer, T. (1997). A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society, 45, 224–240.
go back to reference Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A. L. (2000). Self-organizing processes: The sound of many hands clapping. Nature, 403, 849–850.PubMedCrossRef Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A. L. (2000). Self-organizing processes: The sound of many hands clapping. Nature, 403, 849–850.PubMedCrossRef
go back to reference Novembre, G., Varlet, M., Muawiyath, S., Stevens, C. J., & Keller, P. E. (2015). The E-music box: an empirical method for exploring the universal capacity for musical production and for social interaction through music. Royal Society Open Science, 2, 150286.PubMedPubMedCentralCrossRef Novembre, G., Varlet, M., Muawiyath, S., Stevens, C. J., & Keller, P. E. (2015). The E-music box: an empirical method for exploring the universal capacity for musical production and for social interaction through music. Royal Society Open Science, 2, 150286.PubMedPubMedCentralCrossRef
go back to reference Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612.PubMedPubMedCentralCrossRef Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612.PubMedPubMedCentralCrossRef
go back to reference O’Brien, F., & Cousineau, D. (2014). Representing error bars in within-subject designs in typical software packages. Quantitative Methods for Psychology, 10, 56–67.CrossRef O’Brien, F., & Cousineau, D. (2014). Representing error bars in within-subject designs in typical software packages. Quantitative Methods for Psychology, 10, 56–67.CrossRef
go back to reference Pecenka, N., Engel, A., & Keller, P. E. (2013). Neural correlates of auditory temporal predictions during sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 380.PubMedPubMedCentralCrossRef Pecenka, N., Engel, A., & Keller, P. E. (2013). Neural correlates of auditory temporal predictions during sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 380.PubMedPubMedCentralCrossRef
go back to reference Peckel, M., Pozzo, T., & Bigand, E. (2014). The impact of the perception of rhythmic music on self-paced oscillatory movements. Frontiers in Psychology, 5, 1037.PubMedPubMedCentralCrossRef Peckel, M., Pozzo, T., & Bigand, E. (2014). The impact of the perception of rhythmic music on self-paced oscillatory movements. Frontiers in Psychology, 5, 1037.PubMedPubMedCentralCrossRef
go back to reference Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception: An Interdisciplinary Journal, 28, 3–14.CrossRef Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception: An Interdisciplinary Journal, 28, 3–14.CrossRef
go back to reference Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: movement influences infant rhythm perception. Science, 308, 1430–1430.PubMedCrossRef Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: movement influences infant rhythm perception. Science, 308, 1430–1430.PubMedCrossRef
go back to reference Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and Cognition, 67, 94–102.PubMedCrossRef Phillips-Silver, J., & Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain and Cognition, 67, 94–102.PubMedCrossRef
go back to reference Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences (Vol. 12). Cambridge: Cambridge university press. Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences (Vol. 12). Cambridge: Cambridge university press.
go back to reference Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.PubMedCrossRef Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.PubMedCrossRef
go back to reference Repp, B. H. (2006). Does an auditory distractor sequence affect self-paced tapping? Acta Psychologica, 121, 81–107.PubMedCrossRef Repp, B. H. (2006). Does an auditory distractor sequence affect self-paced tapping? Acta Psychologica, 121, 81–107.PubMedCrossRef
go back to reference Repp, B. H., & Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness. Quarterly Journal of Experimental Psychology Section A, 57, 499–521.CrossRef Repp, B. H., & Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness. Quarterly Journal of Experimental Psychology Section A, 57, 499–521.CrossRef
go back to reference Repp, B. H., & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science, 18, 6–7.PubMedCrossRef Repp, B. H., & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science, 18, 6–7.PubMedCrossRef
go back to reference Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic Bulletin and Review, 20, 403–452.PubMedCrossRef Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic Bulletin and Review, 20, 403–452.PubMedCrossRef
go back to reference Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human Movement Science, 26, 867–891.PubMedCrossRef Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human Movement Science, 26, 867–891.PubMedCrossRef
go back to reference Roerdink, M., Bank, P. J., Peper, C. L. E., & Beek, P. J. (2011). Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation. Gait and Posture, 33, 690–694.PubMedCrossRef Roerdink, M., Bank, P. J., Peper, C. L. E., & Beek, P. J. (2011). Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation. Gait and Posture, 33, 690–694.PubMedCrossRef
go back to reference Romero, V., Coey, C., Schmidt, R. C., & Richardson, M. J. (2012). Movement coordination or movement interference: Visual tracking and spontaneous coordination modulate rhythmic movement interference. PLoS One, 7, e44761.PubMedPubMedCentralCrossRef Romero, V., Coey, C., Schmidt, R. C., & Richardson, M. J. (2012). Movement coordination or movement interference: Visual tracking and spontaneous coordination modulate rhythmic movement interference. PLoS One, 7, e44761.PubMedPubMedCentralCrossRef
go back to reference Ross, J. M., Warlaumont, A. S., Abney, D. H., Rigoli, L. M., & Balasubramaniam, R. (2016). Influence of musical groove on postural sway. Journal of Experimental Psychology: Human Perception and Performance, 42, 308–319.PubMed Ross, J. M., Warlaumont, A. S., Abney, D. H., Rigoli, L. M., & Balasubramaniam, R. (2016). Influence of musical groove on postural sway. Journal of Experimental Psychology: Human Perception and Performance, 42, 308–319.PubMed
go back to reference Scherer, K. R., & Oshinsky, J. S. (1977). Cue utilization in emotion attribution from auditory stimuli. Motivation and Emotion, 1, 331–346.CrossRef Scherer, K. R., & Oshinsky, J. S. (1977). Cue utilization in emotion attribution from auditory stimuli. Motivation and Emotion, 1, 331–346.CrossRef
go back to reference Schmidt, R. C., & O’Brien, B. (1997). Evaluating the dynamics of unintended interpersonal coordination. Ecological Psychology, 9(3), 189–206.CrossRef Schmidt, R. C., & O’Brien, B. (1997). Evaluating the dynamics of unintended interpersonal coordination. Ecological Psychology, 9(3), 189–206.CrossRef
go back to reference Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In A. Fuchs & V. K. Jirsa (Eds.), Coordination: Neural, behavioral and social dynamics (pp. 281–308). Heidelberg: Springer.CrossRef Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In A. Fuchs & V. K. Jirsa (Eds.), Coordination: Neural, behavioral and social dynamics (pp. 281–308). Heidelberg: Springer.CrossRef
go back to reference Schmidt, R. C., Richardson, M. J., Arsenault, C., & Galantucci, B. (2007). Visual tracking and entrainment to an environmental rhythm. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 860–870.PubMed Schmidt, R. C., Richardson, M. J., Arsenault, C., & Galantucci, B. (2007). Visual tracking and entrainment to an environmental rhythm. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 860–870.PubMed
go back to reference Schmidt, R. C., & Turvey, M. T. (1992). Long-term consistencies in assembling coordinated rhythmic movements. Human Movement Science, 11(3), 349–376.CrossRef Schmidt, R. C., & Turvey, M. T. (1992). Long-term consistencies in assembling coordinated rhythmic movements. Human Movement Science, 11(3), 349–376.CrossRef
go back to reference Snyder, J., & Krumhansl, C. L. (2001). Tapping to ragtime: Cues to pulse finding. Music Perception: An Interdisciplinary Journal, 18, 455–489.CrossRef Snyder, J., & Krumhansl, C. L. (2001). Tapping to ragtime: Cues to pulse finding. Music Perception: An Interdisciplinary Journal, 18, 455–489.CrossRef
go back to reference Stupacher, J., Hove, M. J., & Janata, P. (2016). Audio features underlying perceived groove and sensorimotor synchronization in music. Music Perception: An Interdisciplinary Journal, 33, 571–589.CrossRef Stupacher, J., Hove, M. J., & Janata, P. (2016). Audio features underlying perceived groove and sensorimotor synchronization in music. Music Perception: An Interdisciplinary Journal, 33, 571–589.CrossRef
go back to reference Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: a TMS investigation. Brain and Cognition, 82, 127–136.PubMedCrossRef Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: a TMS investigation. Brain and Cognition, 82, 127–136.PubMedCrossRef
go back to reference Styns, F., van Noorden, L., Moelants, D., & Leman, M. (2007). Walking on music. Human Movement Science, 26, 769–785.PubMedCrossRef Styns, F., van Noorden, L., Moelants, D., & Leman, M. (2007). Walking on music. Human Movement Science, 26, 769–785.PubMedCrossRef
go back to reference Tamir-Ostrover, H., & Eitan, Z. (2015). Higher is faster: Pitch register and tempo preferences. Music Perception, 33, 179–198.CrossRef Tamir-Ostrover, H., & Eitan, Z. (2015). Higher is faster: Pitch register and tempo preferences. Music Perception, 33, 179–198.CrossRef
go back to reference Thaut, M. H., McIntosh, G. C., & Rice, R. R. (1997). Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. Journal of the Neurological Sciences, 151, 207–212.PubMedCrossRef Thaut, M. H., McIntosh, G. C., & Rice, R. R. (1997). Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. Journal of the Neurological Sciences, 151, 207–212.PubMedCrossRef
go back to reference Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathbun, J., & Brault, J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Movement Disorders, 11, 193–200.PubMedCrossRef Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathbun, J., & Brault, J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Movement Disorders, 11, 193–200.PubMedCrossRef
go back to reference Todd, N. P., & Cody, F. W. (2000). Vestibular responses to loud dance music: A physiological basis of the “rock and roll threshold”? The Journal of the Acoustical Society of America, 107, 496–500.PubMedCrossRef Todd, N. P., & Cody, F. W. (2000). Vestibular responses to loud dance music: A physiological basis of the “rock and roll threshold”? The Journal of the Acoustical Society of America, 107, 496–500.PubMedCrossRef
go back to reference Todd, N. P., & Lee, C. S. (2015). The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Frontiers in Human Neuroscience, 9, 444.PubMedPubMedCentralCrossRef Todd, N. P., & Lee, C. S. (2015). The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Frontiers in Human Neuroscience, 9, 444.PubMedPubMedCentralCrossRef
go back to reference Todd, N. P., Rosengren, S. M., & Colebatch, J. G. (2008). Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters, 444, 36–41.PubMedCrossRef Todd, N. P., Rosengren, S. M., & Colebatch, J. G. (2008). Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters, 444, 36–41.PubMedCrossRef
go back to reference Todd, N. P., Rosengren, S. M., & Colebatch, J. G. (2009). A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system? Neuroscience Letters, 451, 175–180.PubMedCrossRef Todd, N. P., Rosengren, S. M., & Colebatch, J. G. (2009). A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system? Neuroscience Letters, 451, 175–180.PubMedCrossRef
go back to reference Torre, K., Varlet, M., & Marmelat, V. (2013). Predicting the biological variability of environmental rhythms: Weak or strong anticipation for sensorimotor synchronization? Brain and Cognition, 83, 342–350.PubMedCrossRef Torre, K., Varlet, M., & Marmelat, V. (2013). Predicting the biological variability of environmental rhythms: Weak or strong anticipation for sensorimotor synchronization? Brain and Cognition, 83, 342–350.PubMedCrossRef
go back to reference Trainor, L. J., Gao, X., Lei, J. J., Lehtovaara, K., & Harris, L. R. (2009). The primal role of the vestibular system in determining musical rhythm. Cortex, 45, 35–43.PubMedCrossRef Trainor, L. J., Gao, X., Lei, J. J., Lehtovaara, K., & Harris, L. R. (2009). The primal role of the vestibular system in determining musical rhythm. Cortex, 45, 35–43.PubMedCrossRef
go back to reference Van Der Steen, M. C., & Keller, P. E. (2013). The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 253.PubMedPubMedCentral Van Der Steen, M. C., & Keller, P. E. (2013). The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization. Frontiers in Human Neuroscience, 7, 253.PubMedPubMedCentral
go back to reference Van Dyck, E., Moelants, D., Demey, M., Deweppe, A., Coussement, P., & Leman, M. (2013). The impact of the bass drum on human dance movement. Music Perception: An Interdisciplinary Journal, 30, 349–359.CrossRef Van Dyck, E., Moelants, D., Demey, M., Deweppe, A., Coussement, P., & Leman, M. (2013). The impact of the bass drum on human dance movement. Music Perception: An Interdisciplinary Journal, 30, 349–359.CrossRef
go back to reference Van Dyck, E., Moens, B., Buhmann, J., Demey, M., Coorevits, E., Bella, D., S., & Leman, M. (2015). Spontaneous entrainment of running cadence to music tempo. Sports Medicine-open, 1, 15.PubMedPubMedCentralCrossRef Van Dyck, E., Moens, B., Buhmann, J., Demey, M., Coorevits, E., Bella, D., S., & Leman, M. (2015). Spontaneous entrainment of running cadence to music tempo. Sports Medicine-open, 1, 15.PubMedPubMedCentralCrossRef
go back to reference van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28, 43–66.CrossRef van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28, 43–66.CrossRef
go back to reference Varlet, M., Bucci, C., Richardson, M. J., & Schmidt, R. C. (2015). Informational constraints on spontaneous visuomotor entrainment. Human Movement Science, 41, 265–281.PubMedPubMedCentralCrossRef Varlet, M., Bucci, C., Richardson, M. J., & Schmidt, R. C. (2015). Informational constraints on spontaneous visuomotor entrainment. Human Movement Science, 41, 265–281.PubMedPubMedCentralCrossRef
go back to reference Varlet, M., Coey, C. A., Schmidt, R. C., Marin, L., Bardy, B. G., & Richardson, M. J. (2014). Influence of stimulus velocity profile on rhythmic visuomotor coordination. Journal of Experimental Psychology: Human Perception and Performance, 40, 1849–1860.PubMed Varlet, M., Coey, C. A., Schmidt, R. C., Marin, L., Bardy, B. G., & Richardson, M. J. (2014). Influence of stimulus velocity profile on rhythmic visuomotor coordination. Journal of Experimental Psychology: Human Perception and Performance, 40, 1849–1860.PubMed
go back to reference Varlet, M., Coey, C. A., Schmidt, R. C., & Richardson, M. J. (2012). Influence of stimulus amplitude on unintended visuomotor entrainment. Human Movement Science, 31, 541–552.PubMedCrossRef Varlet, M., Coey, C. A., Schmidt, R. C., & Richardson, M. J. (2012). Influence of stimulus amplitude on unintended visuomotor entrainment. Human Movement Science, 31, 541–552.PubMedCrossRef
go back to reference Varlet, M., Novembre, G., & Keller, P. E. (2017). Dynamical entrainment of corticospinal excitability during rhythmic movement observation: A Transcranial Magnetic Stimulation study. European Journal of Neuroscience, 45, 1465–1472.PubMedCrossRef Varlet, M., Novembre, G., & Keller, P. E. (2017). Dynamical entrainment of corticospinal excitability during rhythmic movement observation: A Transcranial Magnetic Stimulation study. European Journal of Neuroscience, 45, 1465–1472.PubMedCrossRef
go back to reference Varlet, M., Schmidt, R. C., & Richardson, M. J. (2016). Influence of internal and external noise on spontaneous visuomotor synchronization. Journal of Motor Behavior, 48, 122–131.PubMedCrossRef Varlet, M., Schmidt, R. C., & Richardson, M. J. (2016). Influence of internal and external noise on spontaneous visuomotor synchronization. Journal of Motor Behavior, 48, 122–131.PubMedCrossRef
go back to reference Wojtczak, M., Mehta, A. H., & Oxenham, A. J. (2017). Rhythm judgments reveal a frequency asymmetry in the perception and neural coding of sound synchrony. Proceedings of the National Academy of Sciences of the United States of America, 114, 1201–1206.PubMedPubMedCentralCrossRef Wojtczak, M., Mehta, A. H., & Oxenham, A. J. (2017). Rhythm judgments reveal a frequency asymmetry in the perception and neural coding of sound synchrony. Proceedings of the National Academy of Sciences of the United States of America, 114, 1201–1206.PubMedPubMedCentralCrossRef
go back to reference Zamm, A., Pfordresher, P. Q., & Palmer, C. (2015). Temporal coordination in joint music performance: Effects of endogenous rhythms and auditory feedback. Experimental Brain Research, 233, 607–615.PubMedCrossRef Zamm, A., Pfordresher, P. Q., & Palmer, C. (2015). Temporal coordination in joint music performance: Effects of endogenous rhythms and auditory feedback. Experimental Brain Research, 233, 607–615.PubMedCrossRef
go back to reference Zamm, A., Wellman, C., & Palmer, C. (2016). Endogenous rhythms influence interpersonal synchrony. Journal of Experimental Psychology: Human Perception and Performance, 42, 611–616.PubMed Zamm, A., Wellman, C., & Palmer, C. (2016). Endogenous rhythms influence interpersonal synchrony. Journal of Experimental Psychology: Human Perception and Performance, 42, 611–616.PubMed
go back to reference Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558.PubMedCrossRef Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558.PubMedCrossRef
go back to reference Zbikowsky, L. (2002). Conceptualizing music: Cognitive structure, theory, and analysis. New York: Oxford University Press.CrossRef Zbikowsky, L. (2002). Conceptualizing music: Cognitive structure, theory, and analysis. New York: Oxford University Press.CrossRef
Metagegevens
Titel
Effects of pitch and tempo of auditory rhythms on spontaneous movement entrainment and stabilisation
Auteurs
Manuel Varlet
Rohan Williams
Peter E. Keller
Publicatiedatum
16-08-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-1074-8

Andere artikelen Uitgave 3/2020

Psychological Research 3/2020 Naar de uitgave