Skip to main content
Top
Gepubliceerd in: Journal of Foot and Ankle Research 1/2014

Open Access 01-04-2014 | Meeting abstract

Effects of differently cushioned running shoes at left and right foot on running symmetry

Auteurs: Torsten Brauner, Thorsten Sterzing, Mathias Wulf, Thomas Horstmann

Gepubliceerd in: Journal of Foot and Ankle Research | bijlage 1/2014

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Background

The cushioning of running shoes and leg stiffness influence tibial impact shock [1]. This knowledge, however, is based on investigations with the same cushioning at both feet. Unknown is whether leg stiffness can be adjusted for each leg individually. Thus, the purpose of this study was to quantify effects of differently cushioned running shoes at the left and right foot on running symmetry.

Methods

Twenty-eighty physically active males (26.8±8.4years, 1.80±0.05m, 74.8±7.5kg), with similar left and right leg stiffness, participated in this study. Two pairs of identical custom-made running shoes, representing harder-cushioned (mechanical impact testing at rearfoot: 13.8g) and softer-cushioned (10.2g) footwear, were used. The four single shoes were combined into four experimental conditions (left foot-right foot): hard-hard, hard-soft, soft-hard, soft-soft). In each condition, subjects ran 200m on a concrete track at self-selected pace. Conditions were blinded, the order randomized and a 100m run was performed in a neutral running shoe between conditions. Directly following each condition, subjects rated the cushioning of the left and right shoe separately on a visual analogue scale (0cm=soft, 10cm=hard). A mobile 3D accelerometer (Humotion, Germany) strapped to the lower back at L5-S1 recorded vertical acceleration. As a measure of running symmetry [2], peak vertical impacts of 32 foot-falls were determined for each leg. Left and right impact peaks and subjective cushioning ratings were compared using paired Student T-Tests (α=.05).

Results

In both of the mixed conditions, subjects perceived the soft shoe to be significantly softer than the hard shoe (p=.031), according to their actual mechanical impact hardness. Vertical impact peaks at the lower back did not differ between any of the tested conditions and were symmetrical for the mixed conditions.
Table 1
Vertical impact at lower back and VAS rating of cushioning perception
 
Left hard
Right soft
Left soft
Right hard
Left hard
Right hard
Left soft
Right soft
Impact [g]
1.97
(0.50)
2.01
(0.47)
2.01
(0.54)
2.01
(0.49)
2.01
(0.55)
2.02
(0.48)
2.00
(0.52)
2.02
(0.47)
Rating [VAS 0-10]
5.1
(2.5)
4.1
(2.2)
4.3
(1.9)
5.0
(2.1)
5.2
(2.3)
5.2
(2.3)
4.6
(2.2)
4.7
(2.2)

Discussion

Despite the well described effects of shoe cushioning on tibial impact shock, impact at the lower back was not influenced by differently cushioned running shoes. Thus, runners adapted their ankle, knee and/or hip stiffness, reducing the impact shock on its way upward. Interestingly, as runners perceived different cushioning of shoes correctly, this adaptation was controlled for each leg individually, so that also in the mixed cushioning conditions the shock at the lower back remained symmetrical.

Conclusion

Maintaining low and symmetrical impacts at the lower back seems to be important during running, and is achieved by adjusting the leg stiffness, which can even be controlled for each leg individually. In further research, the mechanism of this individual leg stiffness control should be investigated.

Acknowledgement

We thank the Li Ning Sports Science Research Center for funding this research.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
1.
go back to reference Potthast W, Brüggemann G, Lundberg A, Arndt A: The influences of impact interface, muscle activity, and knee angle on impact forces and tibial and femoral accelerations occurring after external impacts. J Appl Biomech. 2010, 26 (1): 1-9.PubMed Potthast W, Brüggemann G, Lundberg A, Arndt A: The influences of impact interface, muscle activity, and knee angle on impact forces and tibial and femoral accelerations occurring after external impacts. J Appl Biomech. 2010, 26 (1): 1-9.PubMed
2.
go back to reference Moe-Nilssen R, Helbostad JL: Estimation of gait cycle characteristics by trunk accelerometry. J Biomech. 2004, 37 (1): 121-6. 10.1016/S0021-9290(03)00233-1.CrossRefPubMed Moe-Nilssen R, Helbostad JL: Estimation of gait cycle characteristics by trunk accelerometry. J Biomech. 2004, 37 (1): 121-6. 10.1016/S0021-9290(03)00233-1.CrossRefPubMed
Metagegevens
Titel
Effects of differently cushioned running shoes at left and right foot on running symmetry
Auteurs
Torsten Brauner
Thorsten Sterzing
Mathias Wulf
Thomas Horstmann
Publicatiedatum
01-04-2014
Uitgeverij
BioMed Central
Gepubliceerd in
Journal of Foot and Ankle Research / Uitgave bijlage 1/2014
Elektronisch ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-7-S1-A8

Andere artikelen bijlage 1/2014

Journal of Foot and Ankle Research 1/2014 Naar de uitgave