Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Psychological Research 1-2/2004

01-12-2004 | Original Article

Effects of binding in the identification of objects

Auteur: P. H. de Vries

Gepubliceerd in: Psychological Research | Uitgave 1-2/2004

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The binding problem requires a solution at the level of individual neurons, but no definite mechanism has yet be given. Therefore, the neuronal level is as yet inadequate for modeling cognitive processes in which binding plays a crucial role. Moreover, the neuronal level involves too many details that are unlikely to be essential for understanding cognition. A general model of cognitive brain functioning is described in which cognitive tasks are represented in a network of cell assemblies. In the network, binding is functionally defined in a way that is compatible with the neuronal level. A computer simulation of the model clarifies how the binding of location and identity of a set of simultaneously presented letters takes place and how questions about the location and identity of the letters are answered. From the simulation of the task three predictions on the logistics of neural processes are derived: 1. When the cell assembly representing a letter participates in more than one temporary excitation loop, it will reach its critical threshold faster. At the behavioral level this means that as the number of identical letters in the display increases, responses will be faster. 2. In order to answer questions about the location and identity of presented letters cell assemblies representing the target location and the target identity have to become bound to their appropriate values. As a consequence the facilitatory effect of identical letters will be stronger if they involve the target location or the target identity than when identical non-targets are involved. 3. Negative identifications are more dependent on the presentation time of the letters than positive identifications because the excitation loops involved take more time to reach the critical threshold. Therefore, the facilitatory effect of identical letters is stronger when the external activation is relatively strong, i.e., when presentation time of the letters is sufficiently long. The reaction times obtained in three behavioral experiments support these hypotheses. Effects of binding can therefore be predicted on the basis of the general logistics of neural processes, without assumptions about a specific binding mechanism at the neuronal level.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
An earlier report of this experiment can be found in Luijendijk (1999).
 
2
C. Quattropani contributed to a first experimental design on the basis of these ideas in partial fulfillment of the requirements for the international student exchange program ERASMUS.
 
Literatuur
go back to reference Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328. Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328.
go back to reference Chastain, G., Cheal, M., & Lyon, D. R. (1996). Attention and non-target effects in the location-cuing paradigm. Perception and Psychophysics, 58, 300–309. PubMed Chastain, G., Cheal, M., & Lyon, D. R. (1996). Attention and non-target effects in the location-cuing paradigm. Perception and Psychophysics, 58, 300–309. PubMed
go back to reference Cortese, F., Bernstein, L. J., Alain, C. (1999). Binding visual features during high-rate serial presentation. Neuroreport, 10, 1565–1570. PubMed Cortese, F., Bernstein, L. J., Alain, C. (1999). Binding visual features during high-rate serial presentation. Neuroreport, 10, 1565–1570. PubMed
go back to reference Dalenoort G. J. (1985). The representation of tasks in active cognitive networks. Cognitive Systems, 1, 253–272. Dalenoort G. J. (1985). The representation of tasks in active cognitive networks. Cognitive Systems, 1, 253–272.
go back to reference Dalenoort, G. J., & De Vries, P. H. (1998a). Understanding in terms of correspondences between levels of description. In C. Taddei-Ferretti & C. Musio (Eds.), Downward processes in the perception representation mechanisms (pp. 497–503). Singapore: World Scientific. Dalenoort, G. J., & De Vries, P. H. (1998a). Understanding in terms of correspondences between levels of description. In C. Taddei-Ferretti & C. Musio (Eds.), Downward processes in the perception representation mechanisms (pp. 497–503). Singapore: World Scientific.
go back to reference Dalenoort, G. J., & De Vries, P. H. (1998b). Self-organization in the brain. In C. Taddei-Ferretti & C. Musio (Eds.), Downward processes in the perception representation mechanisms (pp. 504–520). Singapore: World Scientific. Dalenoort, G. J., & De Vries, P. H. (1998b). Self-organization in the brain. In C. Taddei-Ferretti & C. Musio (Eds.), Downward processes in the perception representation mechanisms (pp. 504–520). Singapore: World Scientific.
go back to reference Dalenoort, G. J., & De Vries, P. H. (1999). Conceptual networks and their role in understanding brain functioning. Preprint, Department of Psychology, University of Groningen, The Netherlands. Dalenoort, G. J., & De Vries, P. H. (1999). Conceptual networks and their role in understanding brain functioning. Preprint, Department of Psychology, University of Groningen, The Netherlands.
go back to reference De Vries, P. H. (2001). Cognitive development and the architecture of cognition: The A-not-B-task and the role of binding. Preprint. Department of Psychology, University of Groningen, The Netherlands. De Vries, P. H. (2001). Cognitive development and the architecture of cognition: The A-not-B-task and the role of binding. Preprint. Department of Psychology, University of Groningen, The Netherlands.
go back to reference De Vries, P. H., & Dalenoort, G. J. (2002). The implication of binding for models of cognitive brain function. In J.A. Bullinaria & W. Lowe (Eds). Proceedings of the Seventh Neural Computation and Psychology Workshop: Connectionist Models of Cognition and Perception (pp. 14–23). Singapore: World Scientific. De Vries, P. H., & Dalenoort, G. J. (2002). The implication of binding for models of cognitive brain function. In J.A. Bullinaria & W. Lowe (Eds). Proceedings of the Seventh Neural Computation and Psychology Workshop: Connectionist Models of Cognition and Perception (pp. 14–23). Singapore: World Scientific.
go back to reference Edelman, G. M. (1987). Neural Darwinism. New York: Basic. Edelman, G. M. (1987). Neural Darwinism. New York: Basic.
go back to reference Hebb, D. O. (1949). The organization of behavior. New York: Wiley. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
go back to reference Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. Psychological Review, 99, 480–517. CrossRefPubMed Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. Psychological Review, 99, 480–517. CrossRefPubMed
go back to reference Lamme, V. A. F. (2000). Neural mechanisms of visual awareness: A linking proposition. Brain and Mind, 1, 385–406. CrossRef Lamme, V. A. F. (2000). Neural mechanisms of visual awareness: A linking proposition. Brain and Mind, 1, 385–406. CrossRef
go back to reference Loftus, G. R., Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490. Loftus, G. R., Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490.
go back to reference Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. PubMed Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. PubMed
go back to reference Luijendijk, A. (1999). ‘Binding’: Modellen, experimenten en neuropsychologische aspecten. Afstudeerscriptie, Department of Psychology, University of Groningen, The Netherlands. Luijendijk, A. (1999). ‘Binding’: Modellen, experimenten en neuropsychologische aspecten. Afstudeerscriptie, Department of Psychology, University of Groningen, The Netherlands.
go back to reference McClelland J. L., & Rumelhart D. E. (1981). An interactive activation model of context effects in letter perception. I. An account of basic findings. Psychological Review, 88, 375–407. CrossRef McClelland J. L., & Rumelhart D. E. (1981). An interactive activation model of context effects in letter perception. I. An account of basic findings. Psychological Review, 88, 375–407. CrossRef
go back to reference O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. Cambridge MA: MIT. O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. Cambridge MA: MIT.
go back to reference Raffone, A., & Wolters, G. (2001). A cortical mechanism for binding in visual working memory. Journal of Cognitive Neuroscience, 13, 766–785. CrossRefPubMed Raffone, A., & Wolters, G. (2001). A cortical mechanism for binding in visual working memory. Journal of Cognitive Neuroscience, 13, 766–785. CrossRefPubMed
go back to reference Roelfsema, P. R., Engel, A. K., Koenig, P., & Singer, W. (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature, 385, 157–161. PubMed Roelfsema, P. R., Engel, A. K., Koenig, P., & Singer, W. (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature, 385, 157–161. PubMed
go back to reference Schneider, W. (1995). MEL Professional: User’s guide. Pittsburgh, PA: Psychology Software Tools. Schneider, W. (1995). MEL Professional: User’s guide. Pittsburgh, PA: Psychology Software Tools.
go back to reference Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioural and Brain Science, 16, 417–494. Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioural and Brain Science, 16, 417–494.
go back to reference Singer, W. (1994). Putative functions of temporal correlations in neocortical processing. In C. Koch & J. L. Davis, (Eds.), Large-scale neuronal theories of the brain (pp. 201–237). Cambridge, MA: MIT-Bradford. Singer, W. (1994). Putative functions of temporal correlations in neocortical processing. In C. Koch & J. L. Davis, (Eds.), Large-scale neuronal theories of the brain (pp. 201–237). Cambridge, MA: MIT-Bradford.
go back to reference Sougné, J. (2001). Binding and multiple instantiation in distributed networks of spiking nodes. Connection Science, 13, 99–126. CrossRef Sougné, J. (2001). Binding and multiple instantiation in distributed networks of spiking nodes. Connection Science, 13, 99–126. CrossRef
go back to reference Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, (11, Whole No. 498). Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, (11, Whole No. 498).
go back to reference Styles, E. A., & Allport, D. A. (1986). Perceptual integration of identity, location, and colour. Psychological Research, 48, 189–200. PubMed Styles, E. A., & Allport, D. A. (1986). Perceptual integration of identity, location, and colour. Psychological Research, 48, 189–200. PubMed
go back to reference Ungerleider, L. G. & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Godale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT. Ungerleider, L. G. & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Godale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT.
go back to reference Van der Velde, F., & de Kamps, M. (2001). From knowing what to knowing where modeling object-based attention with feedback disinhibition of activation. Journal of Cognitive Neuroscience, 13, 479–491. CrossRefPubMed Van der Velde, F., & de Kamps, M. (2001). From knowing what to knowing where modeling object-based attention with feedback disinhibition of activation. Journal of Cognitive Neuroscience, 13, 479–491. CrossRefPubMed
go back to reference Van Leeuwen, C., & Raffone, A. (2001). Coupled non-linear maps as models of perceptual pattern and memory trace dynamics. Cognitive Processing, 1, 1–50. Van Leeuwen, C., & Raffone, A. (2001). Coupled non-linear maps as models of perceptual pattern and memory trace dynamics. Cognitive Processing, 1, 1–50.
go back to reference Von der Malsburg, C. (1994). The correlation theory of brain function. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of neural networks II. (revised version of an internal report 81–2, of Department of Neurobiology, MPI Biophysical Chemistry, Göttingen, Deutschland). Berlin Heidelberg New York: Springer. Von der Malsburg, C. (1994). The correlation theory of brain function. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of neural networks II. (revised version of an internal report 81–2, of Department of Neurobiology, MPI Biophysical Chemistry, Göttingen, Deutschland). Berlin Heidelberg New York: Springer.
go back to reference Wheeler, M. E., & Treisman A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64. CrossRef Wheeler, M. E., & Treisman A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64. CrossRef
Metagegevens
Titel
Effects of binding in the identification of objects
Auteur
P. H. de Vries
Publicatiedatum
01-12-2004
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 1-2/2004
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-003-0159-0