Skip to main content
Top
Gepubliceerd in: Journal of Foot and Ankle Research 1/2012

Open Access 01-12-2012 | Oral presentation

Effect of rollover footwear on metabolic cost of ambulation, lower limb kinematics, kinetics, and EMG related muscle activity during walking

Auteurs: Saeed Forghany, Christopher Nester, Barry Richards, Anna Hatton

Gepubliceerd in: Journal of Foot and Ankle Research | bijlage 1/2012

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Background

Footwear with a curved sole profile shifts the point of contact between the shoe and floor anteriorly compared to a flat shoe. There have been various reports of changes in ground reaction forces, external joint moments, and (rather inconclusively) muscle activity and energy consumption during walking in this “rollover” footwear [16]. The aim of this study was to investigate the effect of two types of rollover footwear (one a new prototype) on walking speed, metabolic cost of gait, lower limb kinematics, kinetics and EMG muscle activity.

Methods

Twenty subjects walked in four footwear conditions: (1) a flat control shoe; (2) a flat control shoe weighted to match the mass of the new rollover shoe prototype; (3) the new prototype rollover shoe; (4) a MBT shoe. Data relating to metabolic energy and temporal aspects of gait were collected during a 6 minute walk test. Data on the lower limb kinematics, joint moments, muscle activity and foot pressure were collected during walking on a straight 10 metre course.

Results

The curved sole moved the contact point under the shoe anteriorly during early stance. This altered ankle moments and reduced ankle plantarflexion after initial contact. In mid stance the roll over footwear reduced ankle dorsiflexion and overall the ankle moved less in roll over footwear. Ground reaction force loading rates were increased by the rollover footwear. There were notable elevations in early stance calf EMG activity. Effects on energy cost of ambulation were negligible. Rollover footwear reduced plantar pressures under the heel and forefoot, and redistributed pressure towards the midfoot. Shoe weight had no effect on any parameters.

Conclusion

Rollover footwear is able to modify ankle kinematics and moments and the activity of some ankle musculature. Effects proximal to the leg were small. There were no effects on the temporal or energy aspects of gait.

Acknowledgement

This work was funded by SSL International Ltd.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
1.
go back to reference Nigg , et al: Effect of an unstable shoe construction on lower extremity gait characteristics. Clin Biomech. 2006, 21: 82-88. 10.1016/j.clinbiomech.2005.08.013.CrossRef Nigg , et al: Effect of an unstable shoe construction on lower extremity gait characteristics. Clin Biomech. 2006, 21: 82-88. 10.1016/j.clinbiomech.2005.08.013.CrossRef
2.
go back to reference Romkes , et al: Changes in gait and EMG when walking with the Masai Barefoot Technique. Clin Biomech. 2006, 21: 75-81. 10.1016/j.clinbiomech.2005.08.003.CrossRef Romkes , et al: Changes in gait and EMG when walking with the Masai Barefoot Technique. Clin Biomech. 2006, 21: 75-81. 10.1016/j.clinbiomech.2005.08.003.CrossRef
3.
go back to reference Myers , et al: Biomechanical implications of the negative heel rocker sole shoe: gait kinematics and kinetics. Gait Posture. 2006, 24: 323-330. 10.1016/j.gaitpost.2005.10.006.CrossRefPubMed Myers , et al: Biomechanical implications of the negative heel rocker sole shoe: gait kinematics and kinetics. Gait Posture. 2006, 24: 323-330. 10.1016/j.gaitpost.2005.10.006.CrossRefPubMed
4.
go back to reference Buchecker , et al: Lower extremity joint loading during level walking with Masai barefoot technology shoes in overweight males. Scand J Med Sci Sports. 2010 Buchecker , et al: Lower extremity joint loading during level walking with Masai barefoot technology shoes in overweight males. Scand J Med Sci Sports. 2010
5.
go back to reference Van Engelen , et al: Metabolic cost and mechanical work during walking after tibiotalar arthrodesis and the influence of footwear. Clin Biomech. 2010, 25: 809-815. 10.1016/j.clinbiomech.2010.05.008.CrossRef Van Engelen , et al: Metabolic cost and mechanical work during walking after tibiotalar arthrodesis and the influence of footwear. Clin Biomech. 2010, 25: 809-815. 10.1016/j.clinbiomech.2010.05.008.CrossRef
6.
go back to reference Hansen , et al: Effect of rocker shoe radius on oxygen consumption rate in young able-bodied persons. J Biomech. 2011, 44: 1021-1024. 10.1016/j.jbiomech.2011.02.008.PubMedCentralCrossRefPubMed Hansen , et al: Effect of rocker shoe radius on oxygen consumption rate in young able-bodied persons. J Biomech. 2011, 44: 1021-1024. 10.1016/j.jbiomech.2011.02.008.PubMedCentralCrossRefPubMed
Metagegevens
Titel
Effect of rollover footwear on metabolic cost of ambulation, lower limb kinematics, kinetics, and EMG related muscle activity during walking
Auteurs
Saeed Forghany
Christopher Nester
Barry Richards
Anna Hatton
Publicatiedatum
01-12-2012
Uitgeverij
BioMed Central
Gepubliceerd in
Journal of Foot and Ankle Research / Uitgave bijlage 1/2012
Elektronisch ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-5-S1-O4

Andere artikelen bijlage 1/2012

Journal of Foot and Ankle Research 1/2012 Naar de uitgave