Skip to main content

Empathy, Approach Attitude, and rTMs on Left DLPFC Affect Emotional Face Recognition and Facial Feedback (EMG)

Published Online:https://doi.org/10.1027/0269-8803/a000150

Abstract. Empathic trait (Balanced Emotional Empathy Scale [BEES]) and emotional attitude (Behavior Activation System [BAS]) were supposed to modulate emotional face recognition, based on left dorsolateral prefrontal (DLPFC) cortex contribution. High-empathic trait (high-BEES) was compared with low-empathic trait (low-BEES), when detection performance (Accuracy Index; Response Times [RTs]) and facial activity (electromyogram, EMG, i.e., zygomatic and corrugators muscle activity) were analyzed. Moreover, the implication of the left DLPFC was tested by using low-frequency rTMS (repeated Transcranial Magnetic Stimulation) to induce a decreased response to facial expression of emotions when subjects (N = 46) were required to empathize with the emotional stimuli. EMG and behavioral responses were found to be modulated by BEES and BAS, with a decreased performance and a reduced facial responsiveness in response to happiness for high-BEES and high-BAS in the case of TMS on left DLPFC. Secondly, an emotion-specific effect was found: the DLPFC effect was observed for the positive emotion (happiness) more than for the negative emotions (anger and fear) with a decreased performance (lower Accuracy Index [AI] and higher RTs) and a decreased zygomatic muscle activity. Finally, a direct correlation was found between BEES and BAS and the latter was revealed to be predictive (regression analysis) of the behavioral and EMG modulation induced by TMS. These results suggest significant effect by empathic and emotional attitude component on both EMG and behavioral level in emotional face recognition. This mechanism appears to be supported and regulated by DLPFC. The lateralization (left) effect was discussed in light of the valence model of emotions.

References

  • Andréasson, P. & Dimberg, U. (2008). Emotional empathy and facial feedback. Journal of Nonverbal Behavior, 32, 215–224. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Bortolotti, A. (2012a). Detection of the facial expression of emotion and self-report measures in empathic situations are influenced by sensorimotor circuit inhibition by low-frequency. Brain Stimulation, 5, 330–336. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Bortolotti, A. (2012b). Resonance mechanism in empathic behavior BEES, BIS/BAS and psychophysiological contribution. Physiology & Behavior, 105, 298–304. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Bortolotti, A. (2013). Emotional face recognition, empathic trait (BEES), and cortical contribution in response to positive and negative cues. The effect of rTMS on dorsal medial prefrontal cortex. Cognitive Neurodynamics, 7, 13–21. First citation in articleCrossrefGoogle Scholar

  • Balconi, M., Bortolotti, A. & Gonzaga, L. (2011). Emotional face recognition, EMG response, and medial prefrontal activity in empathic behavior. Neuroscience Research, 71, 251–259. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Cobelli, Y. (2013). High-frequency rTMS improves facial mimicry and detection responses in an empathic emotional task. Neuroscience, 236, 12–20. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Cobelli, C. (2014). Motivational mechanisms (BAS) and prefrontal cortical activation contribute to recognition memory for emotional words. rTMS effect on performance and EEG (alpha band) measures. Brain and Language, 137, 77–85. First citation in articleCrossrefGoogle Scholar

  • Balconi, M., Falbo, L. & Brambilla, E. (2009). BIS/BAS responses to emotional cues: Self-report, autonomic measure and alpha band modulation. Personality and Individual Differences, 47, 858–863. First citation in articleCrossrefGoogle Scholar

  • Balconi, M., Falbo, L. & Conte, V. A. (2012). BIS and BAS correlates with psychophysiological and cortical response systems during aversive and appetitive emotional stimuli processing. Motivation and Emotion, 36, 218–231. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Ferrari, C. (2012a). rTMS stimulation on left DLPFC affects emotional cue retrieval as a function of anxiety level and gender. Depression and Anxiety, 29, 976–982. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Ferrari, C. (2012b). rTMS stimulation on left DLPFC increases the correct recognition of memories for emotional target and distractor words. Cognitive, Affective & Behavioral Neuroscience, 12, 589–598. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Lucchiari, C. (2005). In the face of emotions: Event-related potentials in supraliminal and subliminal facial expression recognition. Genetic, Social, and General Psychology Monographs, 131, 41–69. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Mazza, G. (2009). Consciousness and emotion: ERP modulation and attentive vs. pre-attentive elaboration of emotional facial expressions by backward masking. Motivation and Emotion, 33, 113–124. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Mazza, G. (2010). Lateralisation effect in comprehension of emotional facial expression: A comparison between EEG alpha band power and behavioural inhibition (BIS) and activation (BAS) systems. Laterality, 15, 361–384. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. & Pozzoli, U. (2009). Arousal effect on emotional face comprehension: Frequency band changes in different time intervals. Physiology & Behavior, 97, 455–462. First citation in articleCrossrefGoogle Scholar

  • Beck, A. T., Steer, R. A. & Brown, G. K. (1996). Manual for the Beck Depression Inventory–II, San Antonio, TX: Psychological Corporation. First citation in articleGoogle Scholar

  • Besel, L. D. S. (2007). Empathy: The role of facial expression recognition. Dissertation abstracts international: Section B. The Sciences and Engineering, 68, 2638 First citation in articleGoogle Scholar

  • Bradley, M. M., Codispoti, M., Cuthbert, B. N. & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1, 276–298. First citation in articleCrossrefGoogle Scholar

  • Brown, L. M., Bradley, M. M. & Lang, P. J. (2006). Affective reactions to pictures of ingroup and outgroup members. Biological Psychology, 71, 303–311. First citation in articleCrossrefGoogle Scholar

  • Brune, M., Scheele, D., Heinisch, C., Tas, C., Wischniewski, J. & Gunturkun, O. (2012). Empathy moderates the effect of repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex on costly punishment. PLoS One, 7, e44747. First citation in articleGoogle Scholar

  • Carver, C. S. & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333. First citation in articleCrossrefGoogle Scholar

  • Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N. & Lang, P. J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 62, 95–111. First citation in articleCrossrefGoogle Scholar

  • de Wied, M., van Boxtel, A., Zaalberg, R., Goudena, P. P. & Matthys, W. (2006). Facial EMG responses to dynamic emotional facial expressions in boys with disruptive behavior disorders. Journal of Psychiatric Research, 40, 112–121. First citation in articleCrossrefGoogle Scholar

  • Ekman, P. & Friesen, W. V. (1976). Pictures of facial affect, Palo Alto, CA: Consulting Psychologists Press. First citation in articleGoogle Scholar

  • Everhart, D. E. & Harrison, D. W. (2000). Facial affect perception among anxious and non-anxious men. Psychobiology, 28, 90–98. First citation in articleGoogle Scholar

  • George, M. S., Wassermann, E. M., Williams, W. E., Kimbrell, T. A., Little, J. T., Danielson, A. L., … Post, R. M. (1997). Mood Improvements following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: A placebo-controlled crossover trial. The American Journal of Psychiatry, 154, 1752–1756. First citation in articleCrossrefGoogle Scholar

  • Gray, J. A. (1981). A critique of Eysenck’s theory of personality. In H. J. EysenckEd., A model for personality (pp. 246–276). New York, NY: Springer. First citation in articleGoogle Scholar

  • Harmer, C. J., Thilo, K. V., Rothwell, J. C. & Goodwin, G. M. (2001). Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. Nature Neuroscience, 4, 17–18. First citation in articleCrossrefGoogle Scholar

  • Harmon-Jones, E. & Allen, J. J. B. (1997). Behavioral activation sensitivity and resting frontal EEG asymmetry: Covariation of putative indicators related to risk for mood disorders. Journal of Abnormal Psychology, 106, 159–163. First citation in articleCrossrefGoogle Scholar

  • Hein, G. & Singer, T. (2008). I feel how you feel but not always: The empathic brain and its modulation. Current Opinion in Neurobiology, 18, 153–158. First citation in articleCrossrefGoogle Scholar

  • Heller, W. (1993). Neuropsychological mechanisms of individual differences in emotion, personality, and arousal. Neuropsychology, 7, 476–489. First citation in articleCrossrefGoogle Scholar

  • Hofelich, A. J. & Preston, S. D. (2012). The meaning in empathy: Distinguishing conceptual encoding from facial mimicry, trait empathy, and attention to emotion. Cognition & Emotion, 26, 119–128. First citation in articleCrossrefGoogle Scholar

  • Jabbi, M., Swart, M. & Keysers, C. (2007). Empathy for positive and negative emotions in the gustatory cortex. NeuroImage, 34, 1744–1753. First citation in articleCrossrefGoogle Scholar

  • Kimbrell, T. A., George, M. S., Parekh, P. I., Ketter, T. A., Podell, D. M., Danielson, A. L., … Post, R. M. (1999). Regional brain activity during transient self-induced anxiety and anger in healthy adults. Biological Psychiatry, 46, 454–465. First citation in articleCrossrefGoogle Scholar

  • Krause, B. & Cohen Kadosh, R. (2014). Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8, 25. First citation in articleCrossrefGoogle Scholar

  • Krause, L., Enticott, P. G., Zangen, B. A. & Fitzgerald, P. B. (2012). The role of medial prefrontal cortex in theory of mind: A deep rTMS study. Behavioural Brain Research, 228, 87–90. First citation in articleCrossrefGoogle Scholar

  • Lang, P. J., Greenwald, M. K., Bradley, M. M. & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30, 261–273. First citation in articleCrossrefGoogle Scholar

  • Lee, T. W., Dolan, R. J. & Critchley, H. D. (2008). Controlling emotional expression: Behavioral and neural correlates of non imitative emotional responses. Cerebral Cortex, 18, 104–113. First citation in articleCrossrefGoogle Scholar

  • Leone, L., Pierro, A. & Mannetti, L. (2002). Validity of the Italian version of the BIS/BAS Scale of Carver and White (1994): Generalizability of structure and relationships of related constructs. Giornale Italiano di Psicologia, 2, 413–434. First citation in articleGoogle Scholar

  • Lev-Ran, S., Shamay-Tsoory, S. G., Zangen, A. & Levkovitz, Y. (2012). Transcranial magnetic stimulation of the ventromedial prefrontal cortex impairs theory of mind learning. European Psychiatry, 27, 285–289. First citation in articleCrossrefGoogle Scholar

  • Mardaga, S., Laloyaux, O. & Hansenne, M. (2006). Personality traits modulate skin conductance response to emotional pictures: An investigation with Cloninger’s model of personality. Personality and Individual Differences, 40, 1603–1614. First citation in articleCrossrefGoogle Scholar

  • Mehrabian, A. (1996). Manual for the balanced emotional empathy scale (BEES), Monterey, CA: Albert Mehrabian. First citation in articleGoogle Scholar

  • Mehrabian, A. & Epstein, N. (1972). A measure of emotional empathy. Journal of Personality, 40, 525–543. First citation in articleCrossrefGoogle Scholar

  • Miniussi, C., Cappa, S. F., Cohen, L. G., Floel, A., Fregni, F., Nitsche, M. A., … Walsh, V. (2008). Efficacy of repetitive transcranial magnetic stimulation/transcranial magnetic direct current stimulation in cognitive neurorehabilitation. Brain Stimulation, 1, 326–336. First citation in articleCrossrefGoogle Scholar

  • Moore, A., Gorodnitsky, I. & Pineda, J. (2012). EEG mu component responses to viewing emotional faces. Behavioural Brain Research, 226, 309–316. First citation in articleCrossrefGoogle Scholar

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. First citation in articleCrossrefGoogle Scholar

  • Preston, S. D. (2007). A perception-action model for empathy. In T. FarrowP. WoodruffEds., Empathy in mental illness (pp. 428–447). New York, NY: University Press. First citation in articleGoogle Scholar

  • Preston, S. D., Bechara, A., Grabowski, T. J., Damasio, H. & Damasio, A. R. (2007). The neural substrates of cognitive empathy. Social Neuroscience, 2, 254–275. First citation in articleCrossrefGoogle Scholar

  • Preston, S. D. & de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25, 1–72. First citation in articleCrossrefGoogle Scholar

  • Rameson, L. T. & Lieberman, M. D. (2009). Empathy: A socio cognitive neuroscience approach. Social and Personality Psychology Compass, 3, 94–110. First citation in articleCrossrefGoogle Scholar

  • Rameson, L. T., Morelli, S. A. & Lieberman, M. D. (2012). The neural correlates of empathy: Experience, automaticity, and prosocial behavior. Journal of Cognitive Neuroscience, 24, 235–245. First citation in articleCrossrefGoogle Scholar

  • Ribeiro, R. L., Teixeira-Silva, F., Pompéia, S. & Bueno, O. F. A. (2007). IAPS includes photographs that elicit low-arousal physiological responses in healthy volunteers. Physiology & Behavior, 91, 671–675. First citation in articleCrossrefGoogle Scholar

  • Rossi, S., Hallett, M., Rossini, P. M. & Pascual-Leone, A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranical magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120, 2008–2039. First citation in articleCrossrefGoogle Scholar

  • Saarela, M. V., Hlushchuk, Y., Williams, A. C., Schurmann, M., Kalso, E. & Hari, R. (2007). The compassionate brain: Humans detect intensity of pain from another’s face. Cerebral Cortex, 17, 230–237. First citation in articleCrossrefGoogle Scholar

  • Seitz, R. J., Nickel, J. & Azari, N. P. (2006). Functional modularity of the medial prefrontal cortex: Involvement in human empathy. Neuropsychology, 20, 743–751. First citation in articleCrossrefGoogle Scholar

  • Seitz, R. J., Schafer, R., Scherfeld, D., Friederich, S., Popp, K., Wittsack, H. J., … Franz, M. (2008). Valuating other people’s emotional face expression: A combined functional magnetic resonance imaging and electroencephalography study. Neuroscience, 152, 713–722. First citation in articleCrossrefGoogle Scholar

  • Shamay-Tsoory, S. G. (2007). Impaired empathy following ventromedial prefrontal brain damage. In T. F. D. FarrowP. W. R. WoodruffEds., Empathy in mental illness (pp. 89–110). Cambridge, UK: Cambridge University Press. First citation in articleGoogle Scholar

  • Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D. & Aharon-Peretz, J. (2005). Impaired affective theory of mind is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18, 55–56. First citation in articleCrossrefGoogle Scholar

  • Sonnby-Borgström, M. (2002). Automatic mimicry reactions as related to differences in emotional empathy. Scandinavian Journal of Psychology, 43, 433–443. First citation in articleCrossrefGoogle Scholar

  • Spinella, M. (2005). Prefrontal substrates of empathy: Psychometric evidence in a community sample. Biological Psychology, 70, 175–181. First citation in articleCrossrefGoogle Scholar

  • Stewart, J. L., Coan, J. A., Towers, D. N. & Allen, J. J. B. (2014). Resting and task-elicited prefrontal brain asymmetry in depression: Support for the capability model. Psychophysiology, 51, 446–455. First citation in articleCrossrefGoogle Scholar

  • Wassermann, E. M., Wedegaertner, F. R., Ziemann, U., George, M. S. & Chen, R. (1998). Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Neuroscience Letters, 250, 141–144. First citation in articleCrossrefGoogle Scholar

  • Westbury, R. W. & Neumann, D. L. (2008). Empathy-related responses to moving film stimuli depicting human and non-human animal targets in negative circumstances. Biological Psychology, 78, 66–74. First citation in articleCrossrefGoogle Scholar