Skip to main content
Articles

The Frontal Generator of the Mismatch Negativity Revisited

Published Online:https://doi.org/10.1027/0269-8803.21.34.188

The mismatch negativity (MMN) is an event-related brain potential elicited by the occurrence of a rare event (deviance) in an otherwise regular acoustic environment, and is assumed to reflect a preattentive mechanism for change detection. A widely adopted model holds that MMN has main generators in the superior temporal planes bilaterally, which are responsible for the sensory memory part of change detection, as well as frontal lobe sources responsible for triggering an attention shift upon change detection. Whereas the temporal sources have been documented in numerous studies across species and methodologies, much less is known about the frontal sources. The present review examines the current state of the evidence for their existence, location, and possible function. It confirms that the frontal generator is still a less consistent finding in MMN research than the temporal generator. There is clear evidence from scalp EEG and, especially, current source density studies for the existence of an MMN generator that is functionally distinct from the main supratemporal generator of the MMN. Evidence from fMRI, PET, optical imaging, EEG source imaging, and lesion studies implicates mainly the inferior frontal and possibly also the medial frontal cortex. However, these results should be taken with caution because of the paucity of support from more direct measures like intracranial recordings and MEG, and the negative findings from several fMRI and PET, as well as EEG source imaging studies. Recent studies also raise questions about the exact role of the frontal generator in triggering an attention shift. Delineating the exact cortical locations of frontal MMN generators, the conditions under which they are activated and, consequently, their function, remains an acute challenge.

References

  • Aaltonen, O. , Tuomainen, J. , Laine, M. , Niemi, P. (1993). Cortical differences in tonal versus vowel processing as revealed by an ERP component called mismatch negativity (MMN). Brain and Language, 44, 139–152. First citation in articleCrossrefGoogle Scholar

  • Alain, C. , Hargrave, R. , Woods, D.L. (1998). Processing of auditory stimuli during visual attention in patients with schizophrenia. Biological Psychiatry, 44, 1151–1159. First citation in articleCrossrefGoogle Scholar

  • Alain, C. , Woods, D.L. , Knight, R.T. (1998). A distributed cortical network for auditory sensory memory in humans. Brain Research, 812, 23–37. First citation in articleCrossrefGoogle Scholar

  • Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing, 16, 38–51. First citation in articleCrossrefGoogle Scholar

  • Alho, K. , Connolly, J.F. , Cheour, M. , Lehtokoski, A. , Huotilainen, M. , Virtanen, J. et al. (1998). Hemispheric lateralization in preattentive processing of speech sounds. Neuroscience Letters, 258, 9–12. First citation in articleCrossrefGoogle Scholar

  • Alho, K. , Winkler, I. , Escera, C. , Huotilainen, M. , Virtanen, J. , Jaaskelainen, I.P. et al. (1998). Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 35, 211–224. First citation in articleCrossrefGoogle Scholar

  • Alho, K. , Woods, D.L. , Algazi, A. , Knight, R.T. , Näätänen, R. (1994). Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalography and Clinical Neurophysiology, 91, 353–362. First citation in articleCrossrefGoogle Scholar

  • Baldeweg, T. , Klugman, A. , Gruzelier, J.H. , Hirsch, S.R. (2002). Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. International Journal of Psychophysiology, 43, 111–122. First citation in articleCrossrefGoogle Scholar

  • Baldeweg, T. , Williams, J.D. , Gruzelier, J.H. (1999). Differential changes in frontal and subtemporal components of mismatch negativity. International Journal of Psychophysiology, 33, 143–148. First citation in articleCrossrefGoogle Scholar

  • Baudena, P. , Halgren, E. , Heit, G. , Clarke, J.M. (1995). Intracerebral potentials to rare target and distracter auditory and visual-stimuli 3. Frontal-cortex. Electroencephalography and Clinical Neurophysiology, 94, 251–264. First citation in articleCrossrefGoogle Scholar

  • Celsis, P. , Boulanouar, K. , Doyon, B. , Ranjeva, J.P. , Berry, I. , Nespoulous, J.L. et al. (1999). Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. NeuroImage, 9, 135–144. First citation in articleCrossrefGoogle Scholar

  • Corbetta, M. , Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. First citation in articleCrossrefGoogle Scholar

  • Csepe, V. , Osman-Sagi, J. , Molnar, M. , Gosy, M. (2001). Impaired speech perception in aphasic patients: Event-related potential and neuropsychological assessment. Neuropsychologia, 39, 1194–1208. First citation in articleCrossrefGoogle Scholar

  • Deouell, L.Y. , Bentin, S. , Giard, M.H. (1998). Mismatch negativity in dichotic listening: Evidence for interhemispheric differences and multiple generators. Psychophysiology, 35, 355–365. First citation in articleCrossrefGoogle Scholar

  • Deouell, L.Y. , Bentin, S. , Soroker, N. (2000). Electrophysiological evidence for an early (preattentive) information processing deficit in patients with right hemisphere damage and unilateral neglect. Brain, 123, 353–365. First citation in articleCrossrefGoogle Scholar

  • Deouell, L.Y. , Heller, A.S. , Malach, R. , D’Esposito, M. , Knight, R.T. (2007). Cerebral responses to change in spatial location of unattended sounds. Neuron, 55, 985–996. First citation in articleCrossrefGoogle Scholar

  • Deouell, L.Y. , Parnes, A. , Pickard, N. , Knight, R.T. (2006). Spatial location is accurately tracked by human auditory sensory memory: Evidence from the mismatch negativity. European Journal of Neuroscience, 24, 1488–1494. First citation in articleCrossrefGoogle Scholar

  • Dittmann-Balcar, A. , Juptner, M. , Jentzen, W. , Schall, U. (2001). Dorsolateral prefrontal cortex activation during automatic auditory duration-mismatch processing in humans: A positron emission tomography study. Neuroscience Letters, 308, 119–122. First citation in articleCrossrefGoogle Scholar

  • Doeller, C.F. , Opitz, B. , Mecklinger, A. , Krick, C. , Reith, W. , Schröger, E. (2003). Prefrontal cortex involvement in preattentive auditory deviance detection: Neuroimaging and electrophysiological evidence. NeuroImage, 20, 1270–1282. First citation in articleCrossrefGoogle Scholar

  • Edmister, W.B. , Talavage, T.M. , Ledden, P.J. , Weisskoff, R.M. (1999). Improved auditory cortex imaging using clustered volume acquisitions. Human Brain Mapping, 7, 89–97. First citation in articleCrossrefGoogle Scholar

  • Edwards, E. , Soltani, M. , Deouell, L.Y. , Berger, M.S. , Knight, R.T. (2005). High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. Journal of Neurophysiology, 94, 4269–4280. First citation in articleCrossrefGoogle Scholar

  • Eichele, T. , Specht, K. , Moosmann, M. , Jongsma, M.L.A. , Quiroga, R.Q. , Nordby, H. et al. (2005). Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 102, 17798–17803. First citation in articleCrossrefGoogle Scholar

  • Escera, C. , Alho, K. , Schröger, E. , Winkler, I. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology and Neuro-Otology, 5(3–4), 151–166. First citation in articleCrossrefGoogle Scholar

  • Frodl-Bauch, T. , Kathmann, N. , Moller, H.J. , Hegerl, U. (1997). Dipole localization and test-retest reliability of frequency and duration mismatch negativity generator processes. Brain Topography, 10, 3–8. First citation in articleCrossrefGoogle Scholar

  • Giard, M.H. , Lavikainen, J. , Reinikainen, K. , Perrin, F. , Bertrand, O. , Pernier, J. et al. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory – An event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7, 133–143. First citation in articleCrossrefGoogle Scholar

  • Giard, M.H. , Perrin, F. , Pernier, J. (1991). Scalp topographies dissociate attentional ERP components during auditory information-processing. Acta Oto-Laryngologica, 168–175. First citation in articleGoogle Scholar

  • Giard, M.H. , Perrin, F. , Pernier, J. , Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiology, 27, 627–640. First citation in articleCrossrefGoogle Scholar

  • Gomot, M. , Giard, M.H. , Roux, S. , Barthelemy, C. , Bruneau, N. (2000). Maturation of frontal and temporal components of mismatch negativity (MMN) in children. NeuroReport, 11, 3109–3112. First citation in articleGoogle Scholar

  • Gratton, G. , Fabiani, M. (1998). Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity. Psychonomic Bulletin and Review, 5, 535–563. First citation in articleCrossrefGoogle Scholar

  • Gratton, G. , Fabiani, M. (2001). Shedding light on brain function: The event-related optical signal. Trends in Cognitive Sciences, 5, 357–363. First citation in articleCrossrefGoogle Scholar

  • Ha, K.S. , Youn, T. , Kong, S.W. , Park, H.J. , Ha, T.H. , Kim, M.S. et al. (2003). Optimized individual mismatch negativity source localization using a realistic head model and the Talairach coordinate system. Brain Topography, 15, 233–238. First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Baudena, P. , Clarke, J.M. , Heit, G. , Marinkovic, K. , Devaux, B. et al. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli: I. Superior temporal plane and parietal lobe. Electroencephalography and Clinical Neurophysiology, 94, 191–220. First citation in articleCrossrefGoogle Scholar

  • Hall, D.A. , Haggard, M.P. , Akeroyd, M.A. , Palmer, A.R. , Summerfield, A.Q. , Elliott, M.R. et al. (1999). “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping, 7, 213–223. First citation in articleCrossrefGoogle Scholar

  • Haroush, K. , Hochstein, S. , Deouell, L.Y. (2005). Does visual attentional load affect auditory change detection? An ERP and psychophysics study. Reviews in the Neurosciences, 16, S29–S30. First citation in articleGoogle Scholar

  • Heilman, K.M. , Van Den Abell, T. (1980). Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30, 327–330. First citation in articleCrossrefGoogle Scholar

  • Huotilainen, M. , Winkler, I. , Alho, K. , Escera, C. , Virtanen, J. , Ilmoniemi, R.J. et al. (1998). Combined mapping of human auditory EEG and MEG responses. Evoked Potentials-Electroencephalography and Clinical Neurophysiology, 108, 370–379. First citation in articleCrossrefGoogle Scholar

  • Ilvonen, T.M. , Kujala, T. , Tervaniemi, M. , Salonen, O. , Näätänen, R. , Pekkonen, E. (2001). The processing of sound duration after left hemisphere stroke: Event-related potential and behavioral evidence. Psychophysiology, 38, 622–628. First citation in articleCrossrefGoogle Scholar

  • Jaaskelainen, I.P. , Alho, K. , Escera, C. , Winkler, I. , Sillanaukee, P. , Näätänen, R. (1996). Effects of ethanol and auditory distraction on forced choice reaction time. Alcohol, 13, 153–156. First citation in articleCrossrefGoogle Scholar

  • Jaaskelainen, I.P. , Pekkonen, E. , Hirvonen, J. , Sillanaukee, P. , Näätänen, R. (1996). Mismatch negativity subcomponents and ethyl alcohol. Biological Psychology, 43, 13–25. First citation in articleCrossrefGoogle Scholar

  • Jaaskelainen, I.P. , Schröger, E. , Näätänen, R. (1999). Electrophysiological indices of acute effects of ethanol on involuntary attention shifting. Psychopharmacology, 141, 16–21. First citation in articleCrossrefGoogle Scholar

  • Jacobsen, T. , Schröger, E. (2001). Is there preattentive memory-based comparison of pitch? Psychophysiology, 38, 723–727. First citation in articleCrossrefGoogle Scholar

  • Jemel, B. , Achenbach, C. , Muller, B.W. , Ropcke, B. , Oades, R.D. (2002). Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topography, 15, 13–27. First citation in articleCrossrefGoogle Scholar

  • Joanisse, M.F. , Zevin, J.D. , McCandliss, B.D. (2006). Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using fMRI and a short-interval habituation trial paradigm. Cerebral Cortex, 17, 2084–2093. First citation in articleCrossrefGoogle Scholar

  • Kircher, T.T. , Rapp, A. , Grodd, W. , Mathiak, K. (2003). Mismatch negativity in schizophrenia: Combining fMRI and whole-head MEG. Schizophrenia Research, 60, 252–253. First citation in articleCrossrefGoogle Scholar

  • Knosche, T.R. , Lattner, S. , Maess, B. , Schauer, M. , Friederici, A.D. (2002). Early parallel processing of auditory word and voice information. NeuroImage, 17, 1493–1503. First citation in articleCrossrefGoogle Scholar

  • Korzyukov, O.A. , Alho, K. , Kujala, A. , Gumenyuk, V. , Ilmoniemi, R. , Virtanen, J. et al. (1999). Electromagnetic responses of the human auditory cortex generated by sensory-memory based processing of tone-frequency changes. Neuroscience Letters, 276, 169. First citation in articleCrossrefGoogle Scholar

  • Korzyukov, O.A. , Winkler, I. , Gumenyuk, V.I. , Alho, K. (2003). Processing abstract auditory features in the human auditory cortex. NeuroImage, 20, 2245. First citation in articleCrossrefGoogle Scholar

  • Kropotov, J.D. , Alho, K. , Naatanen, R. , Ponomarev, V.A. , Kropotova, O.V. , Anichkov, A.D. et al. (2000). Human auditory-cortex mechanisms of preattentive sound discrimination. Neuroscience Letters, 280, 87–90. First citation in articleCrossrefGoogle Scholar

  • Kropotov, J.D. , Naatnen, R. , Sevostianov, A.V. , Alho, K. , Reinikainen, K. , Kropotova, O.V. (1995). Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiology, 32, 418–422. First citation in articleCrossrefGoogle Scholar

  • Levanen, S. , Sams, M. (1997). Disrupting human auditory change detection: Chopin is superior to white noise. Psychophysiology, 34, 258–265. First citation in articleCrossrefGoogle Scholar

  • Liasis, A. , Towell, A. , Alho, K. , Boyd, S. (2001). Intracranial identification of an electric frontal-cortex response to auditory stimulus change: A case study. Cognitive Brain Research, 11, 227–233. First citation in articleCrossrefGoogle Scholar

  • Liebenthal, E. , Ellingson, M.L. , Spanaki, M.V. , Prieto, T.E. , Ropella, K.M. , Binder, J.R. (2003). Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. NeuroImage, 19, 1395–1404. First citation in articleCrossrefGoogle Scholar

  • Logothetis, N.K. , Pauls, J. , Augath, M. , Trinath, T. , Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157. First citation in articleCrossrefGoogle Scholar

  • Makeig, S. , Jung, T.-P. , Bell, A.J. , Ghahremani, D. , Sejnowski, T.J. (1997). Blind separation of auditory event-related brain responses into independent components. PNAS, 94, 10979–10984. First citation in articleCrossrefGoogle Scholar

  • Marco-Pallares, J. , Grau, C. , Ruffini, G. (2005). Combined ICA-LORETA analysis of mismatch negativity. NeuroImage, 25, 471–477. First citation in articleCrossrefGoogle Scholar

  • Mathiak, K. , Hertrich, I. , Lutzenberger, W. , Ackermann, H. (1999). Preattentive processing of consonant vowel syllables at the level of the supratemporal plane: A whole-head magnetencephalography study. Cognitive Brain Research, 8, 251–257. First citation in articleCrossrefGoogle Scholar

  • Mathiak, K. , Hertrich, I. , Lutzenberger, W. , Ackermann, H. (2000). Encoding of temporal speech features (formant transients) during binaural and dichotic stimulus application: A whole-head magnetencephalography study. Cognitive Brain Research, 10(1–2), 125–131. First citation in articleCrossrefGoogle Scholar

  • Mathiak, K. , Hertrich, I. , Lutzenberger, W. , Ackermann, H. (2002). The influence of critical bands on neuromagnetic fields evoked by speech stimuli in humans. Neuroscience Letters, 329, 29–32. First citation in articleCrossrefGoogle Scholar

  • Mathiak, K. , Rapp, A. , Kircher, T.T.J. , Grodd, W. , Hertrich, I. , Weiskopf, N. et al. (2002). Mismatch responses to randomized gradient switching noise as reflected by fMRI and whole-head magnetoencephalography. Human Brain Mapping, 16, 190–195. First citation in articleCrossrefGoogle Scholar

  • Maurer, U. , Bucher, K. , Brem, S. , Brandeis, D. (2003). Development of the automatic mismatch response: From frontal positivity in kindergarten children to the mismatch negativity. Clinical Neurophysiology, 114, 808–817. First citation in articleCrossrefGoogle Scholar

  • Michel, C.M. , Murray, M.M. , Lantz, G. , Gonzalez, S. , Spinelli, L. , Grave de Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115, 2195–2222. First citation in articleCrossrefGoogle Scholar

  • Michie, P.T. , Budd, T.W. , Todd, J. , Rock, D. , Wichmann, H. , Box, J. et al. (2000). Duration and frequency mismatch negativity in schizophrenia. Clinical Neurophysiology, 111, 1054–1065. First citation in articleCrossrefGoogle Scholar

  • Mitchell, T.V. , Morey, R.A. , Inan, S. , Belger, A. (2005). Functional magnetic resonance imaging measure of automatic and controlled auditory processing. NeuroReport, 16, 457–461. First citation in articleGoogle Scholar

  • Molholm, S. , Martinez, A. , Ritter, W. , Javitt, D.C. , Foxe, J.J. (2005). The neural circuitry of preattentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators. Cerebral Cortex, 15, 545–551. First citation in articleCrossrefGoogle Scholar

  • Mukamel, R. , Gelbard, H. , Arieli, A. , Hasson, U. , Fried, I. , Malach, R. (2005). Coupling between neuronal firing, field potentials, and fMR1 in human auditory cortex. Science, 309(5736), 951–954. First citation in articleCrossrefGoogle Scholar

  • Muller, B.W. , Juptner, M. , Jentzen, W. , Muller, S.P. (2002). Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: A PET study. NeuroImage, 17, 231–239. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201–288. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Gaillard, A.W.K. , Mäntysalo, S. (1978). Early selective-attention effect on evoked-potential reinterpreted. Acta Psychologica, 42, 313–329. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Jacobsen, T. , Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42, 25–32. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Lehtokoski, A. , Lennes, M. , Cheour, M. , Huotilainen, M. , Iivonen, A. et al. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385(6615), 432–434. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Michie, P.T. (1979). Early selective-attention effects on the evoked-potential – a critical-review and reinterpretation. Biological Psychology, 8, 81–136. First citation in articleCrossrefGoogle Scholar

  • Nebel, K. , Stude, P. , Wiese, H. , Muller, B. , de Greiff, A. , Forsting, M. et al. (2005). Sparse imaging and continuous event-related fMRI in the visual domain: A systematic comparison. Human Brain Mapping, 24, 130–143. First citation in articleCrossrefGoogle Scholar

  • Novitski, N. , Alho, K. , Korzyukov, O. , Carlson, S. , Martinkauppi, S. , Escera, C. et al. (2001). Effects of acoustic gradient noise from functional magnetic resonance imaging on auditory processing as reflected by event-related brain potentials. NeuroImage, 14(1 Pt 1), 244–251. First citation in articleCrossrefGoogle Scholar

  • Oknina, L.B. , Wild-Wall, N. , Oades, R.D. , Juran, S.A. , Ropcke, B. , Pfueller, U. et al. (2005). Frontal and temporal sources of mismatch negativity in healthy controls, patients at onset of schizophrenia in adolescence and others at 15 years after onset. Schizophrenia Research, 76, 25–41. First citation in articleCrossrefGoogle Scholar

  • Opitz, B. , Mecklinger, A. , von Cramon, D.Y. , Kruggel, F. (1999). Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 36, 142–147. First citation in articleCrossrefGoogle Scholar

  • Opitz, B. , Rinne, T. , Mecklinger, A. , von Cramon, D.Y. , Schröger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage, 15, 167–174. First citation in articleCrossrefGoogle Scholar

  • Opitz, B. , Schröger, E. , von Cramon, D.Y. (2005). Sensory and cognitive mechanisms for preattentive change detection in auditory cortex. European Journal of Neuroscience, 21, 531–535. First citation in articleCrossrefGoogle Scholar

  • Paavilainen, P. , Mikkonen, M. , Kilpelainen, M. , Lehtinen, R. , Saarela, M. , Tapola, L. (2003). Evidence for the different additivity of the temporal and frontal generators of mismatch negativity: A human auditory event-related potential study. Neuroscience Letters, 349, 79–82. First citation in articleCrossrefGoogle Scholar

  • Park, H.J. , Kwon, J.S. , Youn, T. , Pae, J.S. , Kim, J.J. , Kim, M.S. et al. (2002). Statistical parametric mapping of LORETA using high density EEG and individual MRI: Application to mismatch negativities in schizophrenia. Human Brain Mapping, 17, 168–178. First citation in articleCrossrefGoogle Scholar

  • Pascual-Marqui, R.D. , Michel, C.M. , Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65. First citation in articleCrossrefGoogle Scholar

  • Pekkonen, E. , Jousmaki, V. , Kononen, M. , Reinikainen, K. , Partanen, J. (1994). Auditory sensory memory impairment in Alzheimer’s disease – An event-related potential study. NeuroReport, 5, 2537–2540. First citation in articleGoogle Scholar

  • Perrin, F. , Bertrand, O. , Pernier, J. (1987). Scalp current density mapping: Value and estimation from potential data. IEEE Transactions on Biomedical Engineering, 34, 283–288. First citation in articleCrossrefGoogle Scholar

  • Perrin, F. , Pernier, J. , Bertrand, O. , Echallier, J.F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72, 184–187. First citation in articleCrossrefGoogle Scholar

  • Picton, T.W. , Alain, C. , Woods, D.L. , John, M.S. , Scherg, M. , Valdes-Sosa, P. et al. (1999). Intracerebral sources of human auditory-evoked potentials. Audiology and Neuro-Otology, 4, 64–79. First citation in articleCrossrefGoogle Scholar

  • Pulvermüller, F. , Shtyrov, Y. (2006). Language outside the focus of attention: The mismatch negativity as a tool for studying higher cognitive processes. Progress In Neurobiology, 79, 49–71. First citation in articleCrossrefGoogle Scholar

  • Pulvermüller, F. , Shtyrov, Y. , Ilmoniemi, R. (2003). Spatiotemporal dynamics of neural language processing: An MEG study using minimum-norm current estimates. NeuroImage, 20, 1020–1025. First citation in articleCrossrefGoogle Scholar

  • Pulvermüller, F. , Shtyrov, Y. , Ilmoniemi, R.J. , Marslen-Wilson, W.D. (2006). Tracking speech comprehension in space and time. NeuroImage, 31, 1297–1305. First citation in articleCrossrefGoogle Scholar

  • Restuccia, D. , Della Marca, G. , Marra, C. , Rubino, M. , Valeriani, M. (2005). Attentional load of the primary task influences the frontal but not the temporal generators of mismatch negativity. Cognitive Brain Research, 25, 891–899. First citation in articleCrossrefGoogle Scholar

  • Rinne, T. , Alho, K. , Ilmoniemi, R.J. , Virtanen, J. , Näätänen, R. (2000). Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage, 12, 14–19. First citation in articleCrossrefGoogle Scholar

  • Rinne, T. , Degerman, A. , Alho, K. (2005). Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study. NeuroImage, 26, 66–72. First citation in articleCrossrefGoogle Scholar

  • Rinne, T. , Gratton, G. , Fabiani, M. , Cowan, N. , Maclin, E. , Stinard, A. et al. (1999). Scalp-recorded optical signals make sound processing in the auditory cortex visible. NeuroImage, 10, 620–624. First citation in articleCrossrefGoogle Scholar

  • Rinne, T. , Kirjavainen, S. , Salonen, O. , Degerman, A. , Kang, X. , Woods, D.L. et al. (2007). Distributed cortical networks for focused auditory attention and distraction. Neuroscience Letters, 416, 247–251. First citation in articleCrossrefGoogle Scholar

  • Rosburg, T. (2003). Left hemispheric dipole locations of the neuromagnetic mismatch negativity to frequency, intensity, and duration deviants. Cognitive Brain Research, 16, 83–90. First citation in articleCrossrefGoogle Scholar

  • Rosburg, T. (2004). Left parietal lobe activation to auditory mismatch? Human Brain Mapping, 21, 44–45. First citation in articleCrossrefGoogle Scholar

  • Rosburg, T. , Trautner, P. , Dietl, T. , Korzyukov, O.A. , Boutros, N.N. , Schaller, C. et al. (2005). Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain, 128, 819–828. First citation in articleCrossrefGoogle Scholar

  • Sabri, M. , Kareken, D.A. , Dzemidzic, M. , Lowe, M.J. , Melara, R.D. (2004). Neural correlates of auditory sensory memory and automatic change detection. NeuroImage, 21, 69–74. First citation in articleCrossrefGoogle Scholar

  • Sabri, M. , Liebenthal, E. , Waldron, E.J. , Medler, D.A. , Binder, J.R. (2006). Attentional modulation in the detection of irrelevant deviance: A simultaneous ERP/fMRI study. Journal of Cognitive Neuroscience, 18, 689–700. First citation in articleCrossrefGoogle Scholar

  • Sallinen, M. , Lyytinen, H. (1997). Mismatch negativity during objective and subjective sleepiness. Psychophysiology, 34, 694–702. First citation in articleCrossrefGoogle Scholar

  • Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Physics in Medicine and Biology, 32, 11–22. First citation in articleCrossrefGoogle Scholar

  • Sato, Y. , Yabe, H. , Hiruma, T. , Sutoh, T. , Shinozaki, N. , Nashida, T. et al. (2000). The effect of deviant stimulus probability on the human mismatch process. NeuroReport, 11, 3703–3708. First citation in articleGoogle Scholar

  • Sato, Y. , Yabe, H. , Todd, J. , Michie, P. , Shinozaki, N. , Sutoh, T. et al. (2003). Impairment in activation of a frontal attention-switch mechanism in schizophrenic patients. Biological Psychology, 62, 49–63. First citation in articleCrossrefGoogle Scholar

  • Schall, U. , Johnston, P. , Todd, J. , Ward, P.B. , Michie, P.T. (2003). Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs. NeuroImage, 20, 729–736. First citation in articleCrossrefGoogle Scholar

  • Scherg, M. , Vajsar, J. , Picton, T. (1989). A source analysis of the late human auditory evoked potentials. Journal of Cognitive Neuroscience, 1, 336–355. First citation in articleCrossrefGoogle Scholar

  • Schonwiesner, M. , Novitski, N. , Pakarinen, S. , Carlson, S. , Tervaniemi, M. , Naatanen, R. (2007). Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. Journal of Neurophysiology, 97, 2075–2082. First citation in articleCrossrefGoogle Scholar

  • Schröger, E. , Wolff, C. (1998). Attentional orienting and reorienting is indicated by human event-related brain potentials. NeuroReport, 9, 3355–3358. First citation in articleGoogle Scholar

  • Sevostianov, A. , Fromm, S. , Nechaev, V. , Horwitz, B. , Braun, A. (2002). Effect of attention on central auditory processing: An fMRI study. International Journal of Neuroscience, 112, 587–606. First citation in articleCrossrefGoogle Scholar

  • Shah, N.J. , Steinhoff, S. , Mirzazade, S. , Zafiris, O. , Grosse-Ruyken, M.L. , dJancke, L. et al. (2000). The effect of sequence repeat time on auditory cortex stimulation during phonetic discrimination. NeuroImage, 12, 100–108. First citation in articleCrossrefGoogle Scholar

  • Shalgi, S. , Deouell, L.Y. (2007). Direct evidence for differential roles of temporal and frontal components of auditory change detection. Neuropsychologia, 45, 1878–1888. First citation in articleCrossrefGoogle Scholar

  • Shtyrov, Y. , Kujala, T. , Ahveninen, J. , Tervaniemi, M. , Alku, P. , Ilmoniemi, R.J. et al. (1998). Background acoustic noise and the hemispheric lateralization of speech processing In the human brain: Magnetic mismatch negativity study. Neuroscience Letters, 251, 141–144. First citation in articleCrossrefGoogle Scholar

  • Shtyrov, Y. , Pulvermüller, F. (2007). Language in the mismatch negativity design: Motivations, benefits, and prospects. Journal of Psychophysiology, 21, 176–187. First citation in articleLinkGoogle Scholar

  • Sonnadara, R.R. , Alain, C. , Trainor, L.J. (2006). Effects of spatial separation and stimulus probability on the event-related potentials elicited by occasional changes in sound location. Brain Research, 1071, 175–185. First citation in articleCrossrefGoogle Scholar

  • Srinivasan, H. (2005). High-resolution EEG: Theory and practice. In T.C. Handy (Ed.), Event-related potentials. A methods handbook (pp. 167–188). London: MIT Press. First citation in articleGoogle Scholar

  • Sussman, E. , Winkler, I. , Wang, W. (2003). MMN and attention: Competition for deviance detection. null, 40, 430–435. First citation in articleGoogle Scholar

  • Takegata, R. , Huotilainen, M. , Rinne, T. , Näätänen, R. , Winkler, I. (2001). Changes in acoustic features and their conjunctions are processed by separate neuronal populations. NeuroReport, 12, 525–529. First citation in articleGoogle Scholar

  • Talairach, J. , Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: Three-dimensional proportional system: An approach to cerebral imaging. New York: Thieme. First citation in articleGoogle Scholar

  • Talavage, T.M. , Edmister, W.B. (2004). Nonlinearity of fMRI responses in human auditory cortex. Human Brain Mapping, 22, 216–228. First citation in articleCrossrefGoogle Scholar

  • Talavage, T.M. , Edmister, W.B. , Ledden, P.J. , Weisskoff, R.M. (1999). Quantitative assessment of auditory cortex responses induced by imager acoustic noise. Human Brain Mapping, 7, 79–88. First citation in articleCrossrefGoogle Scholar

  • Tervaniemi, M. , Medvedev, S.V. , Alho, K. , Pakhomov, S.V. , Roudas, M.S. , van Zuijen, T.L. et al. (2000). Lateralized automatic auditory processing of phonetic versus musical information: A PET study. Human Brain Mapping, 10, 74–79. First citation in articleCrossrefGoogle Scholar

  • Tervaniemi, M. , Sinkkonen, J. , Virtanen, J. , Kallio, J. , Ilmoniemic, R.J. , Salonen, O. et al. (2005). Test-retest stability of the magnetic mismatch response (MMNm). Clinical Neurophysiology, 116, 1897–1905. First citation in articleCrossrefGoogle Scholar

  • Tervaniemi, M. , Szameitat, A.J. , Kruck, S. , Schröger, E. , Alter, K. , De Baene, W. et al. (2006). From air oscillations to music and speech: Functional magnetic resonance imaging evidence for fine-tuned neural networks in audition. Journal Of Neuroscience, 26, 8647–8652. First citation in articleCrossrefGoogle Scholar

  • Tse, C.Y. , Tien, K.R. , Penney, T.B. (2006). Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in preattentive change detection. NeuroImage, 29, 314–320. First citation in articleCrossrefGoogle Scholar

  • Van Essen, D.C. (2002). Windows on the brain: The emerging role of atlases and databases in neuroscience. Current Opinion in Neurobiology, 12, 574–579. First citation in articleCrossrefGoogle Scholar

  • Van Essen, D.C. , Dickson, J. , Harwell, J. , Hanlon, D. , Anderson, C.H. , Drury, H.A. (2001). An integrated software system for surface-based analyses of cerebral cortex. Journal of American Medical Informatics Association, 8, 443–459. First citation in articleCrossrefGoogle Scholar

  • Waberski, T.D. , Kreitschmann-Andermahr, I. , Kawohl, W. , Darvas, F. , Ryang, Y. , Gobbele, R. et al. (2001). Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch negativity in the cingulum and right inferior temporal gyrus. Neuroscience Letters, 308, 107–110. First citation in articleCrossrefGoogle Scholar

  • Wible, C.G. , Kubicki, M. , Yoo, S.S. , Kacher, D.F. , Salisbury, D.F. , Anderson, M.C. et al. (2001). A functional magnetic resonance imaging study of auditory mismatch in schizophrenia. American Journal of Psychiatry, 158, 938–943. First citation in articleCrossrefGoogle Scholar

  • Wild-Wall, N. , Oades, R.D. , Juran, S.A. (2005). Maturation processes in automatic change detection as revealed by event-related brain potentials and dipole source localization: Significance for adult AD/HD. International Journal of Psychophysiology, 58, 34–46. First citation in articleCrossrefGoogle Scholar

  • Wolff, C. , Schröger, E. (2001). Human preattentive auditory change-detection with single, double, and triple deviations as revealed by mismatch negativity additivity. Neuroscience Letters, 311, 37–40. First citation in articleCrossrefGoogle Scholar

  • Yago, E. , Escera, C. , Alho, K. , Giard, M.H. (2001). Cerebral mechanisms underlying orienting of attention toward auditory frequency changes. NeuroReport, 12, 2583–2587. First citation in articleGoogle Scholar

  • Youn, T. , Park, H.J. , Kim, J.J. , Kim, M.S. , Kwon, J.S. (2003). Altered hemispheric asymmetry and positive symptoms in schizophrenia: Equivalent current dipole of auditory mismatch negativity. Schizophrenia Research, 59, 253–260. First citation in articleCrossrefGoogle Scholar

  • Youn, T. , Park, H.J. , Kwon, J.S. (2004). Response to Rosburg: A voxel-based statistical parametric mapping of MMN current densities. Human Brain Mapping, 21, 46–48. First citation in articleCrossrefGoogle Scholar

  • Yucel, G. , Petty, C. , McCarthy, G. , Belger, A. (2005). Graded visual attention modulates brain responses evoked by task-irrelevant auditory pitch changes. Journal of Cognitive Neuroscience, 17, 1819–1828. First citation in articleCrossrefGoogle Scholar

  • Zevin, J.D. , McCandliss, B.D. (2005). Dishabituation of the BOLD response to speech sounds. Behavioral and Brain Functions, 1, 4. First citation in articleCrossrefGoogle Scholar