Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2017

07-09-2016 | Original Article

Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes

Auteurs: Carmelo M. Vicario, Stergios Makris, Cosimo Urgesi

Gepubliceerd in: Psychological Research | Uitgave 6/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Accurate encoding of the spatio-temporal properties of others’ actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions (“slow-motion” bias), allowing for more detailed representation of ongoing actions and refined prediction abilities.
Literatuur
go back to reference Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353–367.CrossRefPubMed Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353–367.CrossRefPubMed
go back to reference Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931–948.CrossRefPubMed Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931–948.CrossRefPubMed
go back to reference Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.CrossRefPubMed Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.CrossRefPubMed
go back to reference Barr, K., & Hall, C. (1992). The use of imagery by rowers. International Journal of Sport Psychology, 23, 243–261. Barr, K., & Hall, C. (1992). The use of imagery by rowers. International Journal of Sport Psychology, 23, 243–261.
go back to reference Blättler, C., Ferrari, V., Didierjean, A., & Marmèche, E. (2011). Representational momentum in aviation. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1569–1577.PubMed Blättler, C., Ferrari, V., Didierjean, A., & Marmèche, E. (2011). Representational momentum in aviation. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1569–1577.PubMed
go back to reference Blättler, C., Ferrari, V., Didierjean, A., van Elslande, P., & Marmèche, E. (2010). Can expertise modulate representational momentum? Visual Cognition, 18(9), 1253–1273.CrossRef Blättler, C., Ferrari, V., Didierjean, A., van Elslande, P., & Marmèche, E. (2010). Can expertise modulate representational momentum? Visual Cognition, 18(9), 1253–1273.CrossRef
go back to reference Brattan, V. C., Baker, D. H., & Tipper, S. P. (2015). Spatiotemporal judgments of observed actions: Contrasts between first- and third-person perspectives after motor priming. Journal of Experimental Psychology Human Perception and Performance, 41, 1236–1246.CrossRefPubMed Brattan, V. C., Baker, D. H., & Tipper, S. P. (2015). Spatiotemporal judgments of observed actions: Contrasts between first- and third-person perspectives after motor priming. Journal of Experimental Psychology Human Perception and Performance, 41, 1236–1246.CrossRefPubMed
go back to reference Briggs, G. G., & Nebes, R. D. (1975). Patterns of hand preference in a student population. Cortex, 11, 230–238.CrossRefPubMed Briggs, G. G., & Nebes, R. D. (1975). Patterns of hand preference in a student population. Cortex, 11, 230–238.CrossRefPubMed
go back to reference Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all: configural effects in action observation. Psychological Research, 74, 400–406.CrossRefPubMed Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all: configural effects in action observation. Psychological Research, 74, 400–406.CrossRefPubMed
go back to reference Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.CrossRefPubMed Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.CrossRefPubMed
go back to reference Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.CrossRefPubMed Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.CrossRefPubMed
go back to reference Chen, Y. H., Pizzolato, F., & Cesari, P. (2014). Time flies when we view a sport action. Experimental Brain Research, 232, 629–635.CrossRefPubMed Chen, Y. H., Pizzolato, F., & Cesari, P. (2014). Time flies when we view a sport action. Experimental Brain Research, 232, 629–635.CrossRefPubMed
go back to reference Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18, 137–144.CrossRefPubMed Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18, 137–144.CrossRefPubMed
go back to reference Cross, E. S., Kraemer, D. J. M., De, A. F., Hamilton, A., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315–326.CrossRefPubMed Cross, E. S., Kraemer, D. J. M., De, A. F., Hamilton, A., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315–326.CrossRefPubMed
go back to reference Denis, M., Chevalier, N., & Eloi, S. (1985). Visual imagery and the use of mental practice in the development of motor skills. Canadian Journal of Applied Sport Sciences, 10(Suppl.), 4S–16SI. Denis, M., Chevalier, N., & Eloi, S. (1985). Visual imagery and the use of mental practice in the development of motor skills. Canadian Journal of Applied Sport Sciences, 10(Suppl.), 4S–16SI.
go back to reference Fetterman, J.G. (2006). Time and number: Learning, psychophysics, stimulus control, and retention. In E.A. Wasserman & T.R. Zentall (Eds.), Comparative Cognition. Experimental explorations of animal intelligence (p. 290). Oxford University Press. Fetterman, J.G. (2006). Time and number: Learning, psychophysics, stimulus control, and retention. In E.A. Wasserman & T.R. Zentall (Eds.), Comparative Cognition. Experimental explorations of animal intelligence (p. 290). Oxford University Press.
go back to reference Finke, R. A., & Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. Journal of Experimental Psychology. Learning, Memory, and Cognition, 11, 780–794.CrossRefPubMed Finke, R. A., & Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. Journal of Experimental Psychology. Learning, Memory, and Cognition, 11, 780–794.CrossRefPubMed
go back to reference Finke, R. A., & Shyi, G. C. (1988). Mental extrapolation and representational momentum for complex implied motions. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14, 112–120.CrossRefPubMed Finke, R. A., & Shyi, G. C. (1988). Mental extrapolation and representational momentum for complex implied motions. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14, 112–120.CrossRefPubMed
go back to reference Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11, 461–481.CrossRef Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11, 461–481.CrossRef
go back to reference Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception and Psychophysics, 33, 575–581.CrossRefPubMed Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception and Psychophysics, 33, 575–581.CrossRefPubMed
go back to reference Freyd, J. J., & Finke, R. A. (1984). Facilitation of length discrimination using real and imaged context frames. American Journal of Psychology, 97(3), 323–341.CrossRefPubMed Freyd, J. J., & Finke, R. A. (1984). Facilitation of length discrimination using real and imaged context frames. American Journal of Psychology, 97(3), 323–341.CrossRefPubMed
go back to reference Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36, T22–T32.CrossRefPubMed Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36, T22–T32.CrossRefPubMed
go back to reference Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37(1), 10–20.CrossRefPubMed Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37(1), 10–20.CrossRefPubMed
go back to reference Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomics Bullettin and Review, 12(5), 822–851.CrossRef Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomics Bullettin and Review, 12(5), 822–851.CrossRef
go back to reference Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”. Psychonomics Bullettin and Review, 13(1), 166–173.CrossRef Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”. Psychonomics Bullettin and Review, 13(1), 166–173.CrossRef
go back to reference Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group data: estimating sensitivity from average hit and false-alarm rates. Psychological Bullettin, 98(1), 185–199.CrossRef Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group data: estimating sensitivity from average hit and false-alarm rates. Psychological Bullettin, 98(1), 185–199.CrossRef
go back to reference Makris, S., & Urgesi, C. (2015). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive Affective Neuroscience, 10, 342–351.CrossRefPubMed Makris, S., & Urgesi, C. (2015). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive Affective Neuroscience, 10, 342–351.CrossRefPubMed
go back to reference McIntyre, T., & Moran, A. (1996). Imagery validation: How do we know athletes are imaging during mental practice. Journal of Applied Sport Psychology, 8, S132. McIntyre, T., & Moran, A. (1996). Imagery validation: How do we know athletes are imaging during mental practice. Journal of Applied Sport Psychology, 8, S132.
go back to reference Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 1076–1083.CrossRefPubMed Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 1076–1083.CrossRefPubMed
go back to reference Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9(1–2), 177–194.CrossRef Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9(1–2), 177–194.CrossRef
go back to reference Munger, M., & Owens, T. R. (2004). Representational momentum and the flash-lag effect. Visual Cognition, 11(1), 81–103.CrossRef Munger, M., & Owens, T. R. (2004). Representational momentum and the flash-lag effect. Visual Cognition, 11(1), 81–103.CrossRef
go back to reference Nather, F. C., Bueno, J. L., Bigand, E., & Droit-Volet, S. (2011). Time changes with the embodiment of another’s body posture. PLoS One, 6, e19818.CrossRefPubMedPubMedCentral Nather, F. C., Bueno, J. L., Bigand, E., & Droit-Volet, S. (2011). Time changes with the embodiment of another’s body posture. PLoS One, 6, e19818.CrossRefPubMedPubMedCentral
go back to reference Oishi, K., Kasai, T., & Maeshima, T. (2000). Autonomic response specificity during motor imagery. Journal of Physiology and Anthropology and Applied Human Science, 19, 255–261. Oishi, K., Kasai, T., & Maeshima, T. (2000). Autonomic response specificity during motor imagery. Journal of Physiology and Anthropology and Applied Human Science, 19, 255–261.
go back to reference Parkinson, J., Springer, A., & Prinz, W. (2011). Can you see me in the snow? Action simulation aids the detection of visually degraded human motion. The Quarterly Journal of Experimental Psychology, 64, 1463–1472.CrossRefPubMed Parkinson, J., Springer, A., & Prinz, W. (2011). Can you see me in the snow? Action simulation aids the detection of visually degraded human motion. The Quarterly Journal of Experimental Psychology, 64, 1463–1472.CrossRefPubMed
go back to reference Parkinson, J., Springer, A., & Prinz, W. (2012). Before, during and after you disappear: Aspects of timing and dynamic updating of the real-time action simulation of human motions. Psychological Research, 76, 421–433.CrossRefPubMed Parkinson, J., Springer, A., & Prinz, W. (2012). Before, during and after you disappear: Aspects of timing and dynamic updating of the real-time action simulation of human motions. Psychological Research, 76, 421–433.CrossRefPubMed
go back to reference Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.CrossRefPubMed Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.CrossRefPubMed
go back to reference Sparenberg, P., Springer, A., & Prinz, W. (2012). Predicting others’ actions: Evidence for a constant time delay in action simulation. Psychological Research, 76(41–9), 2012. Sparenberg, P., Springer, A., & Prinz, W. (2012). Predicting others’ actions: Evidence for a constant time delay in action simulation. Psychological Research, 76(41–9), 2012.
go back to reference Springer, A., Brandstädter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain and Cognition, 76, 26–36.CrossRefPubMed Springer, A., Brandstädter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain and Cognition, 76, 26–36.CrossRefPubMed
go back to reference Springer, A., Parkinson, J., & Prinz, W. (2013). Action simulation: time course and representational mechanisms. Frontiers in Psychology, 4, 1–20.CrossRef Springer, A., Parkinson, J., & Prinz, W. (2013). Action simulation: time course and representational mechanisms. Frontiers in Psychology, 4, 1–20.CrossRef
go back to reference Stadler, W., Springer, A., Parkinson, J., & Prinz, W. (2012). Movement kinematics affect action prediction: comparing human to non-human point-light actions. Psychological Research, 76, 395–406.CrossRefPubMed Stadler, W., Springer, A., Parkinson, J., & Prinz, W. (2012). Movement kinematics affect action prediction: comparing human to non-human point-light actions. Psychological Research, 76, 395–406.CrossRefPubMed
go back to reference Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods Instruments Computers, 31(1), 137–149.CrossRef Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods Instruments Computers, 31(1), 137–149.CrossRef
go back to reference Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2013). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 2765–2778.CrossRefPubMed Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2013). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 2765–2778.CrossRefPubMed
go back to reference Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20(11), 2511–2521.CrossRefPubMed Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20(11), 2511–2521.CrossRefPubMed
go back to reference Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, S. M. (2012). Long- and short-term plastic modelling of action prediction abilities in volleyball. Psychological Research, 76, 542–560.CrossRefPubMed Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, S. M. (2012). Long- and short-term plastic modelling of action prediction abilities in volleyball. Psychological Research, 76, 542–560.CrossRefPubMed
go back to reference Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9, 217–232.CrossRef Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9, 217–232.CrossRef
go back to reference Vicario, C. M., Bonní, S., & Koch, G. (2011a). Left hand dominance affects supra-second time processing. Frontiers in Integrative Neuroscience, 5, 65.CrossRefPubMedPubMedCentral Vicario, C. M., Bonní, S., & Koch, G. (2011a). Left hand dominance affects supra-second time processing. Frontiers in Integrative Neuroscience, 5, 65.CrossRefPubMedPubMedCentral
go back to reference Vicario, C. M., Martino, D., & Koch, G. (2013). Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience, 245(121–8), 2013. Vicario, C. M., Martino, D., & Koch, G. (2013). Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience, 245(121–8), 2013.
go back to reference Vicario, C. M., Martino, D., Pavone, E. F., & Fuggetta, G. (2011b). Lateral head turning affects temporal memory. Perceptual and Motor Skills, 113, 3–10.CrossRefPubMed Vicario, C. M., Martino, D., Pavone, E. F., & Fuggetta, G. (2011b). Lateral head turning affects temporal memory. Perceptual and Motor Skills, 113, 3–10.CrossRefPubMed
go back to reference Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PLoS One, 3, e1716.CrossRefPubMedPubMedCentral Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PLoS One, 3, e1716.CrossRefPubMedPubMedCentral
go back to reference Vicario, C. M., Rappo, G., Pepi, A., Pavan, A., & Martino, D. (2012). Temporal abnormalities in children with developmental dyscalculia. Developmental Neuropsychology, 37, 636–652.CrossRefPubMed Vicario, C. M., Rappo, G., Pepi, A., Pavan, A., & Martino, D. (2012). Temporal abnormalities in children with developmental dyscalculia. Developmental Neuropsychology, 37, 636–652.CrossRefPubMed
go back to reference Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.CrossRefPubMed Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.CrossRefPubMed
Metagegevens
Titel
Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes
Auteurs
Carmelo M. Vicario
Stergios Makris
Cosimo Urgesi
Publicatiedatum
07-09-2016
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-016-0804-z

Andere artikelen Uitgave 6/2017

Psychological Research 6/2017 Naar de uitgave