Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2018

21-07-2017 | Original Article

Distinct and flexible rates of online control

Auteurs: John de Grosbois, Luc Tremblay

Gepubliceerd in: Psychological Research | Uitgave 6/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Elliott et al. (Hum Mov Sci 10:393–418, 1991) proposed a pseudocontinuous model of online control whereby overlapping corrections lead to the appearance of smooth kinematic profiles in the presence of online feedback. More recently, it was also proposed that online control is not a singular process [see Elliott et al. (Psychol Bull 136(6):1023–1044, 2010)]. However, support for contemporary models of online control were based on methodologies that were not designed to be sensitive to different online control sub-processes. The current study sought to evaluate the possibility of multiple distinct (i.e., visual and non-visual) mechanisms contributing to the control of reaching movements completed in either a full-vision, a no-vision, or a no-vision memory-guided condition. Frequency domain analysis was applied to the acceleration traces of reaching movements. In an attempt to elicit a modulation in the online control mechanisms, these movements were completed at two levels of spatio-temporal constraint, namely with 10 and 30 cm target distances. One finding was that performance in the full-vision relative to both no-vision conditions could be distinguished via two distinct frequency peaks. Increases in the peak magnitude at the lower frequencies were associated with visuomotor mechanisms and increases in the peak magnitude at the higher frequencies were associated with non-visual mechanisms. In addition, performance to the 30-cm target led to a lower peak at a lower frequency relative to the 10 cm target, indicating that the iterative rates of visuomotor control mechanisms are flexible and sensitive to the spatio-temporal constraints of the associated movement.
Voetnoten
1
It has been previously proposed that online control may not necessarily act at regular intervals (e.g., Cruse, Dean, Heuer, & Schmidt, 1990; Navas & Stark, 1968: see discussion).
 
2
Some temporal information could theoretically be ascertained with more advanced frequency domain techniques. However, such temporal information would be inherently limited by the short duration of the movements employed in the current study.
 
3
In addition to the alpha range of frequencies (i.e., 8–12 Hz), the theta (4–7.5 Hz) range of frequencies common to neurophysiological research (e.g., Michel, Lehmann, Henggelerm & Brandeis, 1992) was also included in our α peak range. However, alpha was chosen as a parsimonious label for this peak because the peak was observed at frequencies into this higher range (i.e., 9.5 Hz).
 
4
For reader interest only, the spectra associated with the non-normalized acceleration values have been provided in Fig. 7. Importantly, regarding both the frequency and amplitude analyses, no significant effects including Vision Condition were observed that either peak, F(2,34)s < 0.901, ps > 0.414, η G 2  < 0.010. Within and between subject, trial-to-trial variability warranted the normalization process that yielded the proportional spectra found in Fig. 6.
 
5
Importantly, given the absence of an apparent β peak in the FV condition, the comparison between the FV condition and the two NV conditions could be considered as rather artificial. However, it was deemed important to statistically evaluate the relative power at a comparable frequency to ensure that the presence of the peak lead to a statistically significant increase in pPower.
 
Literatuur
go back to reference Bracewell, R. N. (1986). The Fourier transform and its applications. New York: McGraw-Hill. Bracewell, R. N. (1986). The Fourier transform and its applications. New York: McGraw-Hill.
go back to reference Carlton, L. (1992). Visual processing time and the control of movement. In L. Proteau & D. Elliott (Eds.), Advances in psychology: Vision and motor control (pp. 3–32). Amsterdam: North-Holland.CrossRef Carlton, L. (1992). Visual processing time and the control of movement. In L. Proteau & D. Elliott (Eds.), Advances in psychology: Vision and motor control (pp. 3–32). Amsterdam: North-Holland.CrossRef
go back to reference Crossman, E. R. F. W., & Goodeve, P. J. (1983). Feedback control of hand-movement and Fitts’ law. The Quarterly Journal of Experimental Psychology Section A : Human Experimental Psychology, 35A(2), 251–278.CrossRef Crossman, E. R. F. W., & Goodeve, P. J. (1983). Feedback control of hand-movement and Fitts’ law. The Quarterly Journal of Experimental Psychology Section A : Human Experimental Psychology, 35A(2), 251–278.CrossRef
go back to reference Cruse, H., Dean, J., Heuer, H., & Schmidt, R. A. (1990). Utilization of sensory information for motor control. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action: Current approaches (pp. 43–74). Berlin: Springer.CrossRef Cruse, H., Dean, J., Heuer, H., & Schmidt, R. A. (1990). Utilization of sensory information for motor control. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action: Current approaches (pp. 43–74). Berlin: Springer.CrossRef
go back to reference Elble, R. J., & Koller, W. C. (1990). Tremor. Baltimore: Johns Hopkins University Press. Elble, R. J., & Koller, W. C. (1990). Tremor. Baltimore: Johns Hopkins University Press.
go back to reference Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023–1044. doi:10.1037/a0020958.CrossRefPubMed Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023–1044. doi:10.​1037/​a0020958.CrossRefPubMed
go back to reference Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior, 36(3), 339–351. doi:10.3200/JMBR.36.3.339-351.CrossRefPubMed Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior, 36(3), 339–351. doi:10.​3200/​JMBR.​36.​3.​339-351.CrossRefPubMed
go back to reference Elliott, D., Lyons, J., Hayes, S. J., Burkitt, J. J., Roberts, J. W., Grierson, L. E. M., & Bennett, S. J. (2017). Neuroscience and biobehavioral reviews the multiple process model of goal-directed reaching revisited. Neuroscience and Biobehavioral Reviews, 72, 95–110. doi:10.1016/j.neubiorev.2016.11.016.CrossRefPubMed Elliott, D., Lyons, J., Hayes, S. J., Burkitt, J. J., Roberts, J. W., Grierson, L. E. M., & Bennett, S. J. (2017). Neuroscience and biobehavioral reviews the multiple process model of goal-directed reaching revisited. Neuroscience and Biobehavioral Reviews, 72, 95–110. doi:10.​1016/​j.​neubiorev.​2016.​11.​016.CrossRefPubMed
go back to reference Fautrelle, L., Prablanc, C., Berret, B., Ballay, Y., & Bonnetblanc, F. (2010). Pointing to double-step visual stimuli from a standing position: very short latency (express) corrections are observed in upper and lower limbs and may not require cortical involvement. Neuroscience, 169(2), 697–705. doi:10.1016/j.neuroscience.2010.05.014.CrossRefPubMed Fautrelle, L., Prablanc, C., Berret, B., Ballay, Y., & Bonnetblanc, F. (2010). Pointing to double-step visual stimuli from a standing position: very short latency (express) corrections are observed in upper and lower limbs and may not require cortical involvement. Neuroscience, 169(2), 697–705. doi:10.​1016/​j.​neuroscience.​2010.​05.​014.CrossRefPubMed
go back to reference Fitts, P. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.CrossRefPubMed Fitts, P. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.CrossRefPubMed
go back to reference Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 1688–1703.CrossRefPubMed Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 1688–1703.CrossRefPubMed
go back to reference Franklin, D. W., So, U., Osu, R., & Kawato, M. (2008). Conflicting visual and proprioceptive reflex responses during reaching movements. In M. Ishikawa, K. Doya, H. Miyamoto, & T. Yamakawa (Eds.), Neural information processing (pp. 1002–1011). Heidelberg: Springer.CrossRef Franklin, D. W., So, U., Osu, R., & Kawato, M. (2008). Conflicting visual and proprioceptive reflex responses during reaching movements. In M. Ishikawa, K. Doya, H. Miyamoto, & T. Yamakawa (Eds.), Neural information processing (pp. 1002–1011). Heidelberg: Springer.CrossRef
go back to reference Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1983). Interruption of motor cortical discharge subserving aimed arm movements. Experimental Brain Research, 49, 327–340. doi:10.1007/BF00238775.CrossRefPubMed Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1983). Interruption of motor cortical discharge subserving aimed arm movements. Experimental Brain Research, 49, 327–340. doi:10.​1007/​BF00238775.CrossRefPubMed
go back to reference Hansen, S., Glazebrook, C. M., Anson, J. G., Weeks, D. J., & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60(3), 200–208. doi:10.1037/cjep2006019.CrossRefPubMed Hansen, S., Glazebrook, C. M., Anson, J. G., Weeks, D. J., & Elliott, D. (2006). The influence of advance information about target location and visual feedback on movement planning and execution. Canadian Journal of Experimental Psychology, 60(3), 200–208. doi:10.​1037/​cjep2006019.CrossRefPubMed
go back to reference Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9(3), 281–311.CrossRefPubMed Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9(3), 281–311.CrossRefPubMed
go back to reference Heath, M., Westwood, D. A., & Binsted, G. (2004). The control of memory-guided reaching movements in peripersonal space. Motor Control, 8, 76–106.CrossRefPubMed Heath, M., Westwood, D. A., & Binsted, G. (2004). The control of memory-guided reaching movements in peripersonal space. Motor Control, 8, 76–106.CrossRefPubMed
go back to reference Howarth, C. I., Beggs, W. D. A., & Bowden, J. (1971). The relationship between speed and accuracy of movement aimed at a target. Acta Psychologica, 35, 207–218.CrossRef Howarth, C. I., Beggs, W. D. A., & Bowden, J. (1971). The relationship between speed and accuracy of movement aimed at a target. Acta Psychologica, 35, 207–218.CrossRef
go back to reference Jeannerod, M. (1986). Are corrections in accurate arm movements corrective? In H. J. Freund, U. Buttner, B. Cohen, & J. Noth (Eds.), Progress in brain research (Vol. 64, pp. 353–360). Amsterdam: Elsevier Science Publishers. Jeannerod, M. (1986). Are corrections in accurate arm movements corrective? In H. J. Freund, U. Buttner, B. Cohen, & J. Noth (Eds.), Progress in brain research (Vol. 64, pp. 353–360). Amsterdam: Elsevier Science Publishers.
go back to reference Khan, M. A., Franks, I. M., Elliott, D., Lawrence, G. P., Chua, R., Bernier, P., & Weeks, D. J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience and Biobehavioral Reviews, 30, 1106–1121. doi:10.1016/j.neubiorev.2006.05.002.CrossRefPubMed Khan, M. A., Franks, I. M., Elliott, D., Lawrence, G. P., Chua, R., Bernier, P., & Weeks, D. J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience and Biobehavioral Reviews, 30, 1106–1121. doi:10.​1016/​j.​neubiorev.​2006.​05.​002.CrossRefPubMed
go back to reference Klapp, S. T., & Erwin, C. I. (1976). Relation between programming time and duration of the response being programmed. Journal of Experimental Psychology: Human Perception and Performance, 2(4), 591–598. doi:10.1037/0096-1523.2.4.591.PubMed Klapp, S. T., & Erwin, C. I. (1976). Relation between programming time and duration of the response being programmed. Journal of Experimental Psychology: Human Perception and Performance, 2(4), 591–598. doi:10.​1037/​0096-1523.​2.​4.​591.PubMed
go back to reference Manson, G. A., Alekhina, M., Srubiski, S. L., Williams, C. K., Bhattacharjee, A., & Tremblay, L. (2014). Effects of robotic guidance on sensorimotor control: planning vs. online control? NeuroRehabilitation, 35(4), 689–700. doi:10.3233/NRE-141168.PubMed Manson, G. A., Alekhina, M., Srubiski, S. L., Williams, C. K., Bhattacharjee, A., & Tremblay, L. (2014). Effects of robotic guidance on sensorimotor control: planning vs. online control? NeuroRehabilitation, 35(4), 689–700. doi:10.​3233/​NRE-141168.PubMed
go back to reference Miall, R. C., & Jackson, J. K. (2006). Adaptation to visual feedback delays in manual tracking: Evidence against the Smith Predictor model of human visually guided action. Experimental Brain Research, 172(1), 77–84. doi:10.1007/s00221-005-0306-5.CrossRefPubMed Miall, R. C., & Jackson, J. K. (2006). Adaptation to visual feedback delays in manual tracking: Evidence against the Smith Predictor model of human visually guided action. Experimental Brain Research, 172(1), 77–84. doi:10.​1007/​s00221-005-0306-5.CrossRefPubMed
go back to reference Michel, C. M., Lehmann, D., Henggeler, B., & Brandeis, D. (1992). Localization of the sources of EEG delta, theta, alpha and beta frequency bands using the FFT dipole approximation. Electroencephalography and Clinical Neurophysiology, 82, 38–44. doi:10.1016/0013-4694(92)90180-P.CrossRefPubMed Michel, C. M., Lehmann, D., Henggeler, B., & Brandeis, D. (1992). Localization of the sources of EEG delta, theta, alpha and beta frequency bands using the FFT dipole approximation. Electroencephalography and Clinical Neurophysiology, 82, 38–44. doi:10.​1016/​0013-4694(92)90180-P.CrossRefPubMed
go back to reference Pélisson, D., Prablanc, C., Goodale, A., & Jeannerod, M. (1986). Visual control of reaching movements without vision of the limb: II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Experimental Brain Research, 62, 303–311. doi:10.1007/BF00238849.CrossRefPubMed Pélisson, D., Prablanc, C., Goodale, A., & Jeannerod, M. (1986). Visual control of reaching movements without vision of the limb: II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Experimental Brain Research, 62, 303–311. doi:10.​1007/​BF00238849.CrossRefPubMed
go back to reference Randall, R. B. (2008). Spectral analysis and correlation. In D. Havelock, S. Kuwano, & M. Vorlander (Eds.), Handbook of signal processing in acoustics (pp. 33–52). New York: Springer.CrossRef Randall, R. B. (2008). Spectral analysis and correlation. In D. Havelock, S. Kuwano, & M. Vorlander (Eds.), Handbook of signal processing in acoustics (pp. 33–52). New York: Springer.CrossRef
go back to reference Rossetti, Y., Stelmach, G., Desmurget, M., Prablanc, C., & Jeannerod, M. (1994). The effect of viewing the static hand prior to movement onset on pointing kinematics and variability. Experimental Brain Research, 101(2), 323–330. doi:10.1007/BF00228753.CrossRefPubMed Rossetti, Y., Stelmach, G., Desmurget, M., Prablanc, C., & Jeannerod, M. (1994). The effect of viewing the static hand prior to movement onset on pointing kinematics and variability. Experimental Brain Research, 101(2), 323–330. doi:10.​1007/​BF00228753.CrossRefPubMed
go back to reference Sarlegna, F., Blouin, J., Bresciani, J.-P., Bourdin, C., Vercher, J.-L., & Gauthier, G. M. (2003). Target and hand position information in the online control of goal-directed arm movements. Experimental Brain Research, 151(4), 524–535. doi:10.1007/s00221-003-1504-7.CrossRefPubMed Sarlegna, F., Blouin, J., Bresciani, J.-P., Bourdin, C., Vercher, J.-L., & Gauthier, G. M. (2003). Target and hand position information in the online control of goal-directed arm movements. Experimental Brain Research, 151(4), 524–535. doi:10.​1007/​s00221-003-1504-7.CrossRefPubMed
go back to reference Sosnoff, J. J., & Newell, K. M. (2005). Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Perception & Psychophysics, 67(2), 335–344. doi:10.3758/BF03206496.CrossRef Sosnoff, J. J., & Newell, K. M. (2005). Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Perception & Psychophysics, 67(2), 335–344. doi:10.​3758/​BF03206496.CrossRef
go back to reference Tremblay, L., Crainic, V. A., de Grosbois, J., Bhattacharjee, A., Kennedy, A., Hansen, S., & Welsh, T. N. (2017). An optimal velocity for limb-target regulation processes? Experimental Brain Research, 235(1), 29–40. doi:10.1007/s00221-016-4770-x.CrossRefPubMed Tremblay, L., Crainic, V. A., de Grosbois, J., Bhattacharjee, A., Kennedy, A., Hansen, S., & Welsh, T. N. (2017). An optimal velocity for limb-target regulation processes? Experimental Brain Research, 235(1), 29–40. doi:10.​1007/​s00221-016-4770-x.CrossRefPubMed
go back to reference van Galen, G. P., van Doorn, R. R. A., & Schomaker, L. R. B. (1990). Effects of motor programming on the power spectral density function of finger and wrist movements. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 755–765. doi:10.1037/0096-1523.16.4.755.PubMed van Galen, G. P., van Doorn, R. R. A., & Schomaker, L. R. B. (1990). Effects of motor programming on the power spectral density function of finger and wrist movements. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 755–765. doi:10.​1037/​0096-1523.​16.​4.​755.PubMed
go back to reference Warner, R. M. (1998). Spectral analysis of time series data. New York: Guilford Press. Warner, R. M. (1998). Spectral analysis of time series data. New York: Guilford Press.
Metagegevens
Titel
Distinct and flexible rates of online control
Auteurs
John de Grosbois
Luc Tremblay
Publicatiedatum
21-07-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2018
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0888-0

Andere artikelen Uitgave 6/2018

Psychological Research 6/2018 Naar de uitgave