Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2013

01-05-2013 | Original Article

Displacement of location in illusory line motion

Auteurs: Timothy L. Hubbard, Susan E. Ruppel

Gepubliceerd in: Psychological Research | Uitgave 3/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Six experiments examined displacement in memory for the location of the line in illusory line motion (ILM; appearance or disappearance of a stationary cue is followed by appearance of a stationary line that is presented all at once, but the stationary line is perceived to “unfold” or “be drawn” from the end closest to the cue to the end most distant from the cue). If ILM was induced by having a single cue appear, then memory for the location of the line was displaced toward the cue, and displacement was larger if the line was closer to the cue. If ILM was induced by having one of two previously visible cues vanish, then memory for the location of the line was displaced away from the cue that vanished. In general, the magnitude of displacement increased and then decreased as retention interval increased from 50 to 250 ms and from 250 to 450 ms, respectively. Displacement of the line (a) is consistent with a combination of a spatial averaging of the locations of the cue and the line with a relatively weaker dynamic in the direction of illusory motion, (b) might be implemented in a spreading activation network similar to networks previously suggested to implement displacement resulting from implied or apparent motion, and (c) provides constraints and challenges for theories of ILM.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
Displacement toward a nearby object or toward a closer alignment with the surrounding context has often been referred to as memory averaging, but given that some potential mechanisms for such displacement involve perceptual rather than memorial variables (e.g., the location of foveation relative to the target), the term “memory averaging” is not sufficiently inclusive for these types of displacements. Thus, the more inclusive term “spatial averaging” is used here.
 
2
To the extent that the length of a target is defined by the location of each end of that target, then displacement of only a portion (i.e., one end) of the target would involve a change in memory for location of that part of the target as well as a change in memory for the length of the target. Nonetheless, it is useful to consider displacement in the location of only one end of the target as reflecting a change in the remembered length of the target (as length is not preserved) and equal displacements in the location of both ends of the target as reflecting a change in the remembered location of the target (as length is preserved).
 
Literatuur
go back to reference Anderson, J. R. (1983). The architecture of cognition. Cambridge: Harvard University Press. Anderson, J. R. (1983). The architecture of cognition. Cambridge: Harvard University Press.
go back to reference Bartley, S. H., & Wilkinson, F. R. (1953). Some factors in the production of gamma movement. Journal of Psychology, 36, 201–206.CrossRef Bartley, S. H., & Wilkinson, F. R. (1953). Some factors in the production of gamma movement. Journal of Psychology, 36, 201–206.CrossRef
go back to reference Bavelier, D., Schneider, K. A., & Monacelli, A. (2002). Reflexive gaze orienting induces the line-motion illusion. Vision Research, 42, 2817–2827.PubMedCrossRef Bavelier, D., Schneider, K. A., & Monacelli, A. (2002). Reflexive gaze orienting induces the line-motion illusion. Vision Research, 42, 2817–2827.PubMedCrossRef
go back to reference Bryant, D. J., & Subbiah, I. (1994). Subjective landmarks in perception and memory for spatial location. Canadian Journal of Experimental Psychology, 48, 119–139.PubMedCrossRef Bryant, D. J., & Subbiah, I. (1994). Subjective landmarks in perception and memory for spatial location. Canadian Journal of Experimental Psychology, 48, 119–139.PubMedCrossRef
go back to reference Crawford, T. J., Kean, M., Klein, R. M., & Hamm, J. P. (2006). The effects of illusory line motion on incongruent saccades: Implications for saccadic eye movements and visual attention. Experimental Brain Research, 173, 498–506.CrossRef Crawford, T. J., Kean, M., Klein, R. M., & Hamm, J. P. (2006). The effects of illusory line motion on incongruent saccades: Implications for saccadic eye movements and visual attention. Experimental Brain Research, 173, 498–506.CrossRef
go back to reference Downing, P. E., & Treisman, A. M. (1997). The line-motion illusion: Attention or impletion? Journal of Experimental Psychology: Human Perception and Performance, 23, 768–779.PubMedCrossRef Downing, P. E., & Treisman, A. M. (1997). The line-motion illusion: Attention or impletion? Journal of Experimental Psychology: Human Perception and Performance, 23, 768–779.PubMedCrossRef
go back to reference Eagleman, D. M., & Sejnowski, T. J. (2003). The line-motion illusion can be reversed by motion signals after the line disappears. Perception, 32, 963–968.PubMedCrossRef Eagleman, D. M., & Sejnowski, T. J. (2003). The line-motion illusion can be reversed by motion signals after the line disappears. Perception, 32, 963–968.PubMedCrossRef
go back to reference Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: A modeling study. Visual Cognition, 11, 315–340.CrossRef Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: A modeling study. Visual Cognition, 11, 315–340.CrossRef
go back to reference Fuller, S., & Carrasco, M. (2009). Perceptual consequences of visual performance fields: The case of the line motion illusion. Journal of Vision, 9(13), 1–17.PubMedCrossRef Fuller, S., & Carrasco, M. (2009). Perceptual consequences of visual performance fields: The case of the line motion illusion. Journal of Vision, 9(13), 1–17.PubMedCrossRef
go back to reference Hamm, J. P., & Klein, R. M. (2002). Does attention follow the motion in the “shooting line” illusion? Perception & Psychophysics, 64, 279–291.CrossRef Hamm, J. P., & Klein, R. M. (2002). Does attention follow the motion in the “shooting line” illusion? Perception & Psychophysics, 64, 279–291.CrossRef
go back to reference Harrower, M. R. (1929). Some experiments on the nature of gamma movement. Psychologische Forschung, 13, 55–63.CrossRef Harrower, M. R. (1929). Some experiments on the nature of gamma movement. Psychologische Forschung, 13, 55–63.CrossRef
go back to reference Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Visual Cognition, 9, 8–27.CrossRef Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Visual Cognition, 9, 8–27.CrossRef
go back to reference Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993a). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33, 1219–1240.PubMedCrossRef Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993a). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33, 1219–1240.PubMedCrossRef
go back to reference Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993b). Voluntary and stimulus-induced attention detection as motion sensation. Perception, 22, 517–526.PubMedCrossRef Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993b). Voluntary and stimulus-induced attention detection as motion sensation. Perception, 22, 517–526.PubMedCrossRef
go back to reference Hubbard, T. L. (1993). The effects of context on visual representational momentum. Memory & Cognition, 21, 103–114.CrossRef Hubbard, T. L. (1993). The effects of context on visual representational momentum. Memory & Cognition, 21, 103–114.CrossRef
go back to reference Hubbard, T. L. (1994). Judged displacement: A modular process? American Journal of Psychology, 107, 359–373.CrossRef Hubbard, T. L. (1994). Judged displacement: A modular process? American Journal of Psychology, 107, 359–373.CrossRef
go back to reference Hubbard, T. L. (1995). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322–338.CrossRef Hubbard, T. L. (1995). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322–338.CrossRef
go back to reference Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822–851.CrossRef Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822–851.CrossRef
go back to reference Hubbard, T. L. (2006). Computational theory and cognition in representational momentum and related types of displacement: A reply to Kerzel. Psychonomic Bulletin & Review, 13, 174–177.CrossRef Hubbard, T. L. (2006). Computational theory and cognition in representational momentum and related types of displacement: A reply to Kerzel. Psychonomic Bulletin & Review, 13, 174–177.CrossRef
go back to reference Hubbard, T. L. (2008). Representational momentum contributes to motion induced mislocalization of stationary objects. Visual Cognition, 16, 44–67.CrossRef Hubbard, T. L. (2008). Representational momentum contributes to motion induced mislocalization of stationary objects. Visual Cognition, 16, 44–67.CrossRef
go back to reference Hubbard, T. L., Blessum, J. A., & Ruppel, S. E. (2001). Representational momentum and Michotte’s (1946/1963) “Launching Effect” paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 294–301.PubMedCrossRef Hubbard, T. L., Blessum, J. A., & Ruppel, S. E. (2001). Representational momentum and Michotte’s (1946/1963) “Launching Effect” paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 294–301.PubMedCrossRef
go back to reference Hubbard, T. L., & Courtney, J. R. (2008). The onset repulsion effect and motion induced mislocalization of a stationary object. Perception, 37, 1386–1398.PubMedCrossRef Hubbard, T. L., & Courtney, J. R. (2008). The onset repulsion effect and motion induced mislocalization of a stationary object. Perception, 37, 1386–1398.PubMedCrossRef
go back to reference Hubbard, T. L., Kumar, A. M., & Carp, C. L. (2009). Effects of spatial cueing on representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 666–677.PubMedCrossRef Hubbard, T. L., Kumar, A. M., & Carp, C. L. (2009). Effects of spatial cueing on representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 666–677.PubMedCrossRef
go back to reference Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. Quarterly Journal of Experimental Psychology, 58A, 961–979. Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. Quarterly Journal of Experimental Psychology, 58A, 961–979.
go back to reference Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and the landmark attraction effect. Canadian Journal of Experimental Psychology, 53, 242–256.CrossRef Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and the landmark attraction effect. Canadian Journal of Experimental Psychology, 53, 242–256.CrossRef
go back to reference Hubbard, T. L., & Ruppel, S. E. (2002). A possible role of naive impetus in Michotte’s “Launching Effect:” Evidence from representational momentum. Visual Cognition, 9, 153–176.CrossRef Hubbard, T. L., & Ruppel, S. E. (2002). A possible role of naive impetus in Michotte’s “Launching Effect:” Evidence from representational momentum. Visual Cognition, 9, 153–176.CrossRef
go back to reference Hubbard, T. L., & Ruppel, S. E. (2011a). The effect of spatial cuing on the onset repulsion effect. Attention, Perception, & Psychophysics, 73, 2236–2248.CrossRef Hubbard, T. L., & Ruppel, S. E. (2011a). The effect of spatial cuing on the onset repulsion effect. Attention, Perception, & Psychophysics, 73, 2236–2248.CrossRef
go back to reference Hubbard, T. L., & Ruppel, S. E. (2011b). Effects of temporal and spatial separation on velocity and strength of illusory line motion. Attention, Perception, & Psychophysics, 73, 1133–1146.CrossRef Hubbard, T. L., & Ruppel, S. E. (2011b). Effects of temporal and spatial separation on velocity and strength of illusory line motion. Attention, Perception, & Psychophysics, 73, 1133–1146.CrossRef
go back to reference Hubbard, T. L., Ruppel, S. E., & Courtney, J. R. (2005). The force of appearance: Gamma movement, naive impetus, and representational momentum. Psicologica, 26, 209–228. Hubbard, T. L., Ruppel, S. E., & Courtney, J. R. (2005). The force of appearance: Gamma movement, naive impetus, and representational momentum. Psicologica, 26, 209–228.
go back to reference Jancke, D., Chavane, F., Naaman, S., & Grinvald, A. (2004). Imaging correlates of illusion in early visual cortex. Nature, 428, 423–426.PubMedCrossRef Jancke, D., Chavane, F., Naaman, S., & Grinvald, A. (2004). Imaging correlates of illusion in early visual cortex. Nature, 428, 423–426.PubMedCrossRef
go back to reference Jancke, D., & Erlhagen, W. (2010). Bridging the gap: A model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 422–440). Cambridge: Cambridge University Press.CrossRef Jancke, D., & Erlhagen, W. (2010). Bridging the gap: A model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 422–440). Cambridge: Cambridge University Press.CrossRef
go back to reference Kawahara, J., & Yokosawa, K. (2001). Preattentive perception of multiple illusory line-motion: A formal model of parallel independent-detection in visual search. Journal of General Psychology, 128, 357–383.PubMedCrossRef Kawahara, J., & Yokosawa, K. (2001). Preattentive perception of multiple illusory line-motion: A formal model of parallel independent-detection in visual search. Journal of General Psychology, 128, 357–383.PubMedCrossRef
go back to reference Kawahara, J., Yokosawa, K., Nishida, S., & Sato, T. (1996). Illusory line motion in visual search: Attentional facilitation or apparent motion. Perception, 25, 901–920.PubMedCrossRef Kawahara, J., Yokosawa, K., Nishida, S., & Sato, T. (1996). Illusory line motion in visual search: Attentional facilitation or apparent motion. Perception, 25, 901–920.PubMedCrossRef
go back to reference Kerzel, D. (2002a). Attention shifts and memory averaging. Quarterly Journal of Experimental Psychology, 55A, 425–443. Kerzel, D. (2002a). Attention shifts and memory averaging. Quarterly Journal of Experimental Psychology, 55A, 425–443.
go back to reference Kerzel, D. (2002b). Memory for the position of stationary objects: Disentangling foveal bias and memory averaging. Vision Research, 42, 159–167.PubMedCrossRef Kerzel, D. (2002b). Memory for the position of stationary objects: Disentangling foveal bias and memory averaging. Vision Research, 42, 159–167.PubMedCrossRef
go back to reference Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43, 2623–2635.PubMedCrossRef Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43, 2623–2635.PubMedCrossRef
go back to reference Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “Representational Momentum”. Psychonomic Bulletin & Review, 13, 166–173.CrossRef Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “Representational Momentum”. Psychonomic Bulletin & Review, 13, 166–173.CrossRef
go back to reference Kerzel, D. (2010). The Fröhlich effect: Past and present. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 321–337). Cambridge: Cambridge University Press.CrossRef Kerzel, D. (2010). The Fröhlich effect: Past and present. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 321–337). Cambridge: Cambridge University Press.CrossRef
go back to reference Kerzel, D., & Gegenfurtner, K. R. (2004). Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Research, 44, 577–590.PubMedCrossRef Kerzel, D., & Gegenfurtner, K. R. (2004). Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Research, 44, 577–590.PubMedCrossRef
go back to reference Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9, 177–194.CrossRef Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9, 177–194.CrossRef
go back to reference Müsseler, J., & Kerzel, D. (2004). The trial context determines adjusted localization of stimuli: Reconciling the Fröhlich and onset repulsion effects. Vision Research, 44, 2201–2206.PubMed Müsseler, J., & Kerzel, D. (2004). The trial context determines adjusted localization of stimuli: Reconciling the Fröhlich and onset repulsion effects. Vision Research, 44, 2201–2206.PubMed
go back to reference Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Visual Cognition, 9, 120–138.CrossRef Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Visual Cognition, 9, 120–138.CrossRef
go back to reference Müsseler, J., van der Heijden, A. H. C., Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Perception & Psychophysics, 61, 1646–1661.CrossRef Müsseler, J., van der Heijden, A. H. C., Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Perception & Psychophysics, 61, 1646–1661.CrossRef
go back to reference Nagai, M., & Saiki, J. (2005). Illusory motion and representational momentum. Perception & Psychophysics, 67, 855–866.CrossRef Nagai, M., & Saiki, J. (2005). Illusory motion and representational momentum. Perception & Psychophysics, 67, 855–866.CrossRef
go back to reference Nelson, T. O., & Chaiklin, S. (1980). Immediate memory for spatial location. Journal of Experimental Psychology: Human Learning & Memory, 6, 529–545.CrossRef Nelson, T. O., & Chaiklin, S. (1980). Immediate memory for spatial location. Journal of Experimental Psychology: Human Learning & Memory, 6, 529–545.CrossRef
go back to reference Postma, A., Huntjens, R. J. C., Meuwissen, M., & Laeng, B. (2006). The time course of spatial memory processing in the two hemispheres. Neuropsychologia, 44, 1914–1918.PubMedCrossRef Postma, A., Huntjens, R. J. C., Meuwissen, M., & Laeng, B. (2006). The time course of spatial memory processing in the two hemispheres. Neuropsychologia, 44, 1914–1918.PubMedCrossRef
go back to reference Scharlau, I., & Horstmann, G. (2006). Perceptual latency priming and illusory line motion: Facilitation by gradients of attention? Advances in Cognitive Psychology, 2, 87–97.CrossRef Scharlau, I., & Horstmann, G. (2006). Perceptual latency priming and illusory line motion: Facilitation by gradients of attention? Advances in Cognitive Psychology, 2, 87–97.CrossRef
go back to reference Schmidt, W. (2000). Endogenous attention and illusory line motion reexamined. Journal of Experimental Psychology: Human Perception and Performance, 26, 980–996.PubMedCrossRef Schmidt, W. (2000). Endogenous attention and illusory line motion reexamined. Journal of Experimental Psychology: Human Perception and Performance, 26, 980–996.PubMedCrossRef
go back to reference Shimojo, S., Hikosaka, O., & Miyauchi, S. (1999). Automatic and controlled attention detected by the line motion effect. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 145–163). Cambridge: MIT Press. Shimojo, S., Hikosaka, O., & Miyauchi, S. (1999). Automatic and controlled attention detected by the line motion effect. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 145–163). Cambridge: MIT Press.
go back to reference Steinman, B. A., Steinman, S. B., & Lehmkuhle, S. (1995). Visual attention mechanisms show a center-surround organization. Vision Research, 35, 1859–1869.PubMedCrossRef Steinman, B. A., Steinman, S. B., & Lehmkuhle, S. (1995). Visual attention mechanisms show a center-surround organization. Vision Research, 35, 1859–1869.PubMedCrossRef
go back to reference van der Ham, I. J. M., van Wezel, R. J. A., Oleksiak, A., & Postma, A. (2007). The time course of hemisphere differences in categorical and coordinate spatial processing. Neuropsychologia, 45, 2492–2498.PubMedCrossRef van der Ham, I. J. M., van Wezel, R. J. A., Oleksiak, A., & Postma, A. (2007). The time course of hemisphere differences in categorical and coordinate spatial processing. Neuropsychologia, 45, 2492–2498.PubMedCrossRef
go back to reference von Grünau, M., Dube, S., & Kwas, M. (1996). Two contributions to motion induction: A preattentive effect and facilitation due to attentional capture. Vision Research, 36, 2447–2457.CrossRef von Grünau, M., Dube, S., & Kwas, M. (1996). Two contributions to motion induction: A preattentive effect and facilitation due to attentional capture. Vision Research, 36, 2447–2457.CrossRef
go back to reference von Grünau, M., & Faubert, J. (1994). Intraattribute and interattribute motion induction. Perception, 23, 913–928.CrossRef von Grünau, M., & Faubert, J. (1994). Intraattribute and interattribute motion induction. Perception, 23, 913–928.CrossRef
go back to reference Whitney, D., & Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli. Visual Cognition, 9, 139–152.CrossRef Whitney, D., & Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli. Visual Cognition, 9, 139–152.CrossRef
go back to reference Winters, J. J. (1964). Gamma movement: Apparent movement in figural aftereffects experiments. Perceptual and Motor Skills, 19, 819–822.PubMedCrossRef Winters, J. J. (1964). Gamma movement: Apparent movement in figural aftereffects experiments. Perceptual and Motor Skills, 19, 819–822.PubMedCrossRef
Metagegevens
Titel
Displacement of location in illusory line motion
Auteurs
Timothy L. Hubbard
Susan E. Ruppel
Publicatiedatum
01-05-2013
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 3/2013
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-012-0428-x

Andere artikelen Uitgave 3/2013

Psychological Research 3/2013 Naar de uitgave