Skip to main content
Top
Gepubliceerd in:

10-02-2021 | Biomechanica en Bewegingsanalyse

De gespiraliseerde achillespees

Auteur: Chris Riezebos

Gepubliceerd in: Podosophia | Uitgave 1/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

De achillespees heeft een bijzondere, gespiraliseerde bouw. Hij bestaat uit drie ‘subpezen’, die van bovenaf gezien in het rechterbeen tegen de klok in en in het linkerbeen met de klok mee, stevig in elkaar worden gedraaid bij tenenstand en bij de afzet tijdens gaan, lopen en springen. Door dit mechanisme kan er extra elastische energie in de achillespees worden opgeslagen. Er blijken nauwe relaties te bestaan tussen de functie van de achillespees en de spiraalvorm ervan, in combinatie met de buiglijn van de tenen en de richting van de gewrichtsassen van het onderste en bovenste spronggewricht. Mogelijk leiden verstoringen in deze relaties zelfs tot degeneratieve veranderingen in de achillespees, met name als de oorzaak daarvan is gelegen in een bewegingsbeperking in het onderste spronggewricht. In dit artikel wordt een test besproken waarmee zo’n bewegingsbeperking kan worden opgespoord. Deze test kan tevens dienen als oefening voor het vergroten van de bewegingsmogelijkheid in het onderste spronggewricht en/of als warming-up voor bijvoorbeeld hardlopen of springen.
Literatuur
1.
go back to reference Doral M, Alam M, Bozkurt M, Turhan E, Atay O, Dönmez G, et al. Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc. 2010;18:638–43.PubMedCrossRef Doral M, Alam M, Bozkurt M, Turhan E, Atay O, Dönmez G, et al. Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc. 2010;18:638–43.PubMedCrossRef
6.
go back to reference White J. Torsion of the achilles tendon: its surgical significance. Arch Surg. 1943;46(5):784–7.CrossRef White J. Torsion of the achilles tendon: its surgical significance. Arch Surg. 1943;46(5):784–7.CrossRef
7.
go back to reference Dalmau-Pastor M, Fargues-Polo B, Casanova-Martínez D, Vega J, Golanó P. Anatomy of the triceps surae: a pictorial essay. Foot Ankle Clin. 2014;19(4):603–35.PubMedCrossRef Dalmau-Pastor M, Fargues-Polo B, Casanova-Martínez D, Vega J, Golanó P. Anatomy of the triceps surae: a pictorial essay. Foot Ankle Clin. 2014;19(4):603–35.PubMedCrossRef
8.
go back to reference Shim V, Handsfield G, Fernandez J, Lloyd D, Besier T. Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon. Sci Rep. 2018;8:13856.PubMedPubMedCentralCrossRef Shim V, Handsfield G, Fernandez J, Lloyd D, Besier T. Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon. Sci Rep. 2018;8:13856.PubMedPubMedCentralCrossRef
9.
go back to reference Warwick R, Williams P, redactie. Gray’s anatomy. 35e druk. Edinburgh: Longman; 1973. Warwick R, Williams P, redactie. Gray’s anatomy. 35e druk. Edinburgh: Longman; 1973.
10.
go back to reference Winnicki K, Ochała-Kłos A, Rutowicz B, Pękala P, Tomaszewski K. Functional anatomy, histology and biomechanics of the human achilles tendon – a comprehensive review. Ann Anat. 2020;229:151461.PubMedCrossRef Winnicki K, Ochała-Kłos A, Rutowicz B, Pękala P, Tomaszewski K. Functional anatomy, histology and biomechanics of the human achilles tendon – a comprehensive review. Ann Anat. 2020;229:151461.PubMedCrossRef
11.
go back to reference Charles J, Suntaxi F, Anderst W. In vivo human lower limb muscle architecture dataset obtained using diffusion tensor imaging. PLoS ONE. 2019;14(10):1–18.CrossRef Charles J, Suntaxi F, Anderst W. In vivo human lower limb muscle architecture dataset obtained using diffusion tensor imaging. PLoS ONE. 2019;14(10):1–18.CrossRef
13.
go back to reference Morse C, Thom J, Reeves N, Birch K, Narici M. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. 2005;99:1050–5.PubMedCrossRef Morse C, Thom J, Reeves N, Birch K, Narici M. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. 2005;99:1050–5.PubMedCrossRef
14.
go back to reference Narici M, Franchi M, Maganaris C. Muscle structural assembly and functional consequences. J Exp Biol. 2016;219:276–84.PubMedCrossRef Narici M, Franchi M, Maganaris C. Muscle structural assembly and functional consequences. J Exp Biol. 2016;219:276–84.PubMedCrossRef
15.
go back to reference Albracht K, Arampatzis A, Baltzopoulos V. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech. 2008;41:2211–8.PubMedCrossRef Albracht K, Arampatzis A, Baltzopoulos V. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech. 2008;41:2211–8.PubMedCrossRef
16.
go back to reference Fukunaga T, Roy R, Shellock G, et al. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res. 1992;10:926–34.CrossRef Fukunaga T, Roy R, Shellock G, et al. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res. 1992;10:926–34.CrossRef
17.
go back to reference Gerritsen B, Berger M, Elshoud G, Schutte H. Anatomie in vivo. Houten: Bohn Stafleu van Loghum; 2019.CrossRef Gerritsen B, Berger M, Elshoud G, Schutte H. Anatomie in vivo. Houten: Bohn Stafleu van Loghum; 2019.CrossRef
18.
go back to reference Ker R, Alexander R, Bennett M. Why are mammalian tendons so thick? J Zool. 1988;216:309–24.CrossRef Ker R, Alexander R, Bennett M. Why are mammalian tendons so thick? J Zool. 1988;216:309–24.CrossRef
20.
go back to reference Reeves N, Narici M, Maganaris C. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96:885–92.PubMedCrossRef Reeves N, Narici M, Maganaris C. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96:885–92.PubMedCrossRef
21.
go back to reference Rospars J, Meyer-Vernet N. Force per cross-sectional area from molecules to muscles: a general property of biological motors. R Soc Open Sci. 2016;3:160313.PubMedPubMedCentralCrossRef Rospars J, Meyer-Vernet N. Force per cross-sectional area from molecules to muscles: a general property of biological motors. R Soc Open Sci. 2016;3:160313.PubMedPubMedCentralCrossRef
22.
go back to reference Alexander R. Tendon elasticity and muscle function. Comp Biochem Physiol. 2002;133:1001–11.CrossRef Alexander R. Tendon elasticity and muscle function. Comp Biochem Physiol. 2002;133:1001–11.CrossRef
23.
go back to reference Józsa L, Kannus P. Human tendons: anatomy, physiology and pathology. Champaign: Human Kinetics; 1997. Józsa L, Kannus P. Human tendons: anatomy, physiology and pathology. Champaign: Human Kinetics; 1997.
24.
go back to reference Kongsgaard M, Aagaard P, Kjaer M, Magnusson S. Structural achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol. 2005;99:1965–71.PubMedCrossRef Kongsgaard M, Aagaard P, Kjaer M, Magnusson S. Structural achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol. 2005;99:1965–71.PubMedCrossRef
25.
26.
go back to reference Wren T, Yerby S, Beaupre G, Carter D. Mechanical properties of the human Achilles tendon. Clin Biomech. 2001;16:245–51.CrossRef Wren T, Yerby S, Beaupre G, Carter D. Mechanical properties of the human Achilles tendon. Clin Biomech. 2001;16:245–51.CrossRef
27.
go back to reference Magnusson S, Aagaard P, Rosager S, Dyhre-Poulsen P, Kjaer M. Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol. 2001;531(1):277–88.PubMedPubMedCentralCrossRef Magnusson S, Aagaard P, Rosager S, Dyhre-Poulsen P, Kjaer M. Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol. 2001;531(1):277–88.PubMedPubMedCentralCrossRef
28.
go back to reference Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports. 2002;12:90–8.PubMedCrossRef Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports. 2002;12:90–8.PubMedCrossRef
29.
go back to reference Geremia J, Baroni B, Bobbert M, Bini R, Lanferdini F, Vaz M. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol. 2018;118:1725–36.PubMedCrossRef Geremia J, Baroni B, Bobbert M, Bini R, Lanferdini F, Vaz M. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol. 2018;118:1725–36.PubMedCrossRef
30.
go back to reference Kongsgaard M, Nielsen C, Hegnsvad S, Aagaard P, Magnusson S. Mechanical properties of the human achilles tendon, in vivo. Clin Biomech. 2011;26:772–7.CrossRef Kongsgaard M, Nielsen C, Hegnsvad S, Aagaard P, Magnusson S. Mechanical properties of the human achilles tendon, in vivo. Clin Biomech. 2011;26:772–7.CrossRef
31.
go back to reference Almonroeder T, Willson J, Kernozek T. The effect of foot strike pattern on achilles tendon load during running. Ann Biomed Eng. 2013;41(8):1758–66.PubMedCrossRef Almonroeder T, Willson J, Kernozek T. The effect of foot strike pattern on achilles tendon load during running. Ann Biomed Eng. 2013;41(8):1758–66.PubMedCrossRef
32.
go back to reference Gheidi N, Kernozek T, Willson J, Revak A, Diers K. Achilles tendon loading during weight bearing exercises. Phys Ther Sport. 2018;32:260–8.PubMedCrossRef Gheidi N, Kernozek T, Willson J, Revak A, Diers K. Achilles tendon loading during weight bearing exercises. Phys Ther Sport. 2018;32:260–8.PubMedCrossRef
33.
go back to reference Revak A, Diers K, Kernozek T, Gheidi N, Olbrantz C. Achilles tendon loading during heel-raising and -lowering exercises. J Athl Train. 2017;52(2):89–96.PubMedPubMedCentralCrossRef Revak A, Diers K, Kernozek T, Gheidi N, Olbrantz C. Achilles tendon loading during heel-raising and -lowering exercises. J Athl Train. 2017;52(2):89–96.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Gils C van, Steed R, Page J. Torsion of the human achilles tendon. J Foot Ankle Surg. 1996;35(1):41–8.PubMedCrossRef Gils C van, Steed R, Page J. Torsion of the human achilles tendon. J Foot Ankle Surg. 1996;35(1):41–8.PubMedCrossRef
36.
go back to reference Lichtwark G, Bougoulias K, Wilson A. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 2007;40:157–64.PubMedCrossRef Lichtwark G, Bougoulias K, Wilson A. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 2007;40:157–64.PubMedCrossRef
37.
go back to reference Pękala P, Henry B, Ochała A, et al. The twisted structure of the Achilles tendon unraveled: a detailed quantitative and qualitative anatomical investigation. Scand J Med Sci Sports. 2017;27:1705–15.PubMedCrossRef Pękala P, Henry B, Ochała A, et al. The twisted structure of the Achilles tendon unraveled: a detailed quantitative and qualitative anatomical investigation. Scand J Med Sci Sports. 2017;27:1705–15.PubMedCrossRef
38.
39.
go back to reference Koryak Y. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity. J Appl Physiol. 2019;126:880–93.PubMedCrossRef Koryak Y. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity. J Appl Physiol. 2019;126:880–93.PubMedCrossRef
40.
go back to reference Winters J, Woo S. Multiple muscle systems. Biomechanics and movement organization. New York: Springer; 1990.CrossRef Winters J, Woo S. Multiple muscle systems. Biomechanics and movement organization. New York: Springer; 1990.CrossRef
41.
go back to reference Ishikawa M, Pakaslahti J, Komi P. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture. 2007;25:380–4.PubMedCrossRef Ishikawa M, Pakaslahti J, Komi P. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture. 2007;25:380–4.PubMedCrossRef
42.
go back to reference Pang B, Ying M. Sonographic measurement of achilles tendons in asymptomatic subjects. Variation with age, body height, and dominance of ankle. J Ultrasound Med. 2006;25:1291–6.PubMedCrossRef Pang B, Ying M. Sonographic measurement of achilles tendons in asymptomatic subjects. Variation with age, body height, and dominance of ankle. J Ultrasound Med. 2006;25:1291–6.PubMedCrossRef
43.
go back to reference Edama M, Kubo M, Onishi H, et al. The twisted structure of the human Achilles tendon. Scand J Med Sci Sports. 2015;25:497–503.CrossRef Edama M, Kubo M, Onishi H, et al. The twisted structure of the human Achilles tendon. Scand J Med Sci Sports. 2015;25:497–503.CrossRef
44.
go back to reference Edama M, Kubo M, Onishi H, et al. Structure of the achilles tendon at the insertion on the calcaneal tuberosity. J Anat. 2016;229:610–4.PubMedPubMedCentralCrossRef Edama M, Kubo M, Onishi H, et al. Structure of the achilles tendon at the insertion on the calcaneal tuberosity. J Anat. 2016;229:610–4.PubMedPubMedCentralCrossRef
45.
go back to reference Handsfield G, Inouye J, Slane L, Thelen D, Wilson Miller G, Blemker S. A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements. J Biomech. 2017;51:17–25.PubMedCrossRef Handsfield G, Inouye J, Slane L, Thelen D, Wilson Miller G, Blemker S. A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements. J Biomech. 2017;51:17–25.PubMedCrossRef
46.
go back to reference Szaro P, Witkowski G, Smigielski R, Krajewski P, Ciszek B. Fascicles of the adult human achillestendon – an anatomical study. Ann Anat. 2009;191:586–93.PubMedCrossRef Szaro P, Witkowski G, Smigielski R, Krajewski P, Ciszek B. Fascicles of the adult human achillestendon – an anatomical study. Ann Anat. 2009;191:586–93.PubMedCrossRef
47.
go back to reference Alexander R. Exploring biomechanics: animals in motion. New York: Scientific American Library; 1992. Alexander R. Exploring biomechanics: animals in motion. New York: Scientific American Library; 1992.
48.
go back to reference Roberts T, Konow N. How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev. 2013;41(4):1–8.CrossRef Roberts T, Konow N. How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev. 2013;41(4):1–8.CrossRef
49.
go back to reference Farris D, Lichtwark G, Brown N, Cresswell A. The role of human ankle plantar flexor muscle – tendon interaction and architecture in maximal vertical jumping examined in vivo. J Exp Biol. 2016;219:528–34.PubMed Farris D, Lichtwark G, Brown N, Cresswell A. The role of human ankle plantar flexor muscle – tendon interaction and architecture in maximal vertical jumping examined in vivo. J Exp Biol. 2016;219:528–34.PubMed
50.
go back to reference Ishikawa M, Komi P, Grey M, Lepola V, Bruggemann G. Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol. 2005;99:603–8.PubMedCrossRef Ishikawa M, Komi P, Grey M, Lepola V, Bruggemann G. Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol. 2005;99:603–8.PubMedCrossRef
51.
go back to reference Kirkendall D, Garrett W. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997;7:62–6.PubMedCrossRef Kirkendall D, Garrett W. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997;7:62–6.PubMedCrossRef
52.
go back to reference Lipfert S, Günther M, Renjewski D, Seyfarth A. Impulsive ankle push-off powers leg swing in human walking. J Exp Biol. 2014;217:1218–28.PubMedCrossRef Lipfert S, Günther M, Renjewski D, Seyfarth A. Impulsive ankle push-off powers leg swing in human walking. J Exp Biol. 2014;217:1218–28.PubMedCrossRef
53.
go back to reference Roberts T. The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol. 2002;133:1087–99.CrossRef Roberts T. The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol. 2002;133:1087–99.CrossRef
54.
55.
go back to reference Vogel S. Cat’s paws and catapults. London: W.W. Norton; 1998. Vogel S. Cat’s paws and catapults. London: W.W. Norton; 1998.
56.
go back to reference Dean M, Azizi E, Summers A. Uniform strain in broad muscles: active and passive effects of the twisted tendon of the spotted ratfish hydrolagus colliei. J Exp Biol. 2007;210:3395–406.PubMedCrossRef Dean M, Azizi E, Summers A. Uniform strain in broad muscles: active and passive effects of the twisted tendon of the spotted ratfish hydrolagus colliei. J Exp Biol. 2007;210:3395–406.PubMedCrossRef
57.
go back to reference Riezebos C. Tapebandage bij het inversietrauma. Podosophia. 2019;27:127–32.CrossRef Riezebos C. Tapebandage bij het inversietrauma. Podosophia. 2019;27:127–32.CrossRef
Metagegevens
Titel
De gespiraliseerde achillespees
Auteur
Chris Riezebos
Publicatiedatum
10-02-2021
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Podosophia / Uitgave 1/2021
Print ISSN: 0929-5380
Elektronisch ISSN: 1876-5815
DOI
https://doi.org/10.1007/s12481-020-00292-0