Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2015

01-03-2015 | Original Article

Crossmodal encoding of motor sequence memories

Auteurs: Marianne A. Stephan, Brittany Heckel, Sunbin Song, Leonardo G. Cohen

Gepubliceerd in: Psychological Research | Uitgave 2/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

In this study, we tested the hypothesis that exposure to specific auditory sequences could lead to the crossmodal induction of new motor memories. Twenty young, healthy participants memorized a melody without moving. Each tone in the memorized melody had previously been associated with a particular finger movement. For ten of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (C group, n = 10). For the other ten participants, the melody memorized was incongruent to the subsequent finger movement sequence (InC group, n = 10). Results showed faster performance of the movement sequence in the C group than in the InC group. This difference in motor performance was most pronounced 6 h after melody learning and then dissipated over 30 days. These results provide evidence of a specific, crossmodal encoding of a movement sequence representation through an auditory sequence with the effect on motor performance lasting for several hours. The findings of this study are significant, as the formation of new motor memories through exposure to auditory stimuli may be useful in rehabilitation settings where the initial encoding of motor memories through physical training is disrupted.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Antony, J. W., Gobel, E. W., O’Hare, J. K., Reber, P. J., & Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. Nature Neuroscience, 15, 1114–1116.CrossRefPubMedCentralPubMed Antony, J. W., Gobel, E. W., O’Hare, J. K., Reber, P. J., & Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. Nature Neuroscience, 15, 1114–1116.CrossRefPubMedCentralPubMed
go back to reference Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage, 30, 917–926.CrossRefPubMed Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage, 30, 917–926.CrossRefPubMed
go back to reference Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65–78.CrossRefPubMed Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65–78.CrossRefPubMed
go back to reference Brown, R. M., & Palmer, C. (2012). Auditory-motor learning influences auditory memory for music. Memory and Cognition, 40, 567–578.CrossRefPubMed Brown, R. M., & Palmer, C. (2012). Auditory-motor learning influences auditory memory for music. Memory and Cognition, 40, 567–578.CrossRefPubMed
go back to reference Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 2844–2854.CrossRefPubMed Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 2844–2854.CrossRefPubMed
go back to reference D’Ausilio, A., Altenmüller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24, 955–958.CrossRefPubMed D’Ausilio, A., Altenmüller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24, 955–958.CrossRefPubMed
go back to reference Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 199–206.CrossRefPubMed Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 199–206.CrossRefPubMed
go back to reference Hoffmann, J., Sebald, A., & Stöcker, C. (2001). Irrelevant response effects improve serial learning in serial reaction time tasks. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27, 470–482.CrossRefPubMed Hoffmann, J., Sebald, A., & Stöcker, C. (2001). Irrelevant response effects improve serial learning in serial reaction time tasks. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27, 470–482.CrossRefPubMed
go back to reference Keller, P. E., & Koch, I. (2008). Action planning in sequential skills: relations to music performance. The Quarterly Journal of Experimental Psychology, 61, 275–291.CrossRefPubMed Keller, P. E., & Koch, I. (2008). Action planning in sequential skills: relations to music performance. The Quarterly Journal of Experimental Psychology, 61, 275–291.CrossRefPubMed
go back to reference Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: auditory-motor interactions in musical training. Annals of the New York Academy of Sciences, 1060, 189–194.CrossRefPubMed Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: auditory-motor interactions in musical training. Annals of the New York Academy of Sciences, 1060, 189–194.CrossRefPubMed
go back to reference Lahav, A., Katz, T., Chess, R., & Saltzman, E. (2013). Improved motor sequence retention by motionless listening. Psychological Research, 77, 310–319.CrossRefPubMed Lahav, A., Katz, T., Chess, R., & Saltzman, E. (2013). Improved motor sequence retention by motionless listening. Psychological Research, 77, 310–319.CrossRefPubMed
go back to reference Nyberg, L., Habib, R., McIntosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain activity during memory retrieval. Proceedings of the National Academy of Sciences, 97, 11120–11124.CrossRef Nyberg, L., Habib, R., McIntosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain activity during memory retrieval. Proceedings of the National Academy of Sciences, 97, 11120–11124.CrossRef
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMed Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMed
go back to reference Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2013). nlme: linear and nonlinear mixed effects models. R package version 3.1-108. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2013). nlme: linear and nonlinear mixed effects models. R package version 3.1-108.
go back to reference Rodriguez-Fornells, A., Rojo, N., Amengual, J. L., Ripollés, P., Altenmüller, E., & Münte, T. F. (2012). The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Annals of the New York Academy of Sciences, 1252, 282–293.CrossRefPubMed Rodriguez-Fornells, A., Rojo, N., Amengual, J. L., Ripollés, P., Altenmüller, E., & Münte, T. F. (2012). The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Annals of the New York Academy of Sciences, 1252, 282–293.CrossRefPubMed
go back to reference Rusconi, E., Kwan, B., Giordano, B., Umiltà, C., & Butterworth, B. (2005). The mental space of pitch height. Annals of the New York Academy of Sciences, 1060, 195–197.CrossRefPubMed Rusconi, E., Kwan, B., Giordano, B., Umiltà, C., & Butterworth, B. (2005). The mental space of pitch height. Annals of the New York Academy of Sciences, 1060, 195–197.CrossRefPubMed
go back to reference Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: the SMARC effect. Cognition, 99, 113–129.CrossRefPubMed Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: the SMARC effect. Cognition, 99, 113–129.CrossRefPubMed
go back to reference Sharma, N., Pomeroy, V. M., & Baron, J.-C. (2006). Motor imagery: a backdoor to the motor system after stroke? Stroke, 37, 1941–1952.CrossRefPubMed Sharma, N., Pomeroy, V. M., & Baron, J.-C. (2006). Motor imagery: a backdoor to the motor system after stroke? Stroke, 37, 1941–1952.CrossRefPubMed
go back to reference Stefan, K., Classen, J., Celnik, P., & Cohen, L. G. (2008). Concurrent action observation modulates practice-induced motor memory formation. European Journal of Neuroscience, 27, 730–738.CrossRefPubMed Stefan, K., Classen, J., Celnik, P., & Cohen, L. G. (2008). Concurrent action observation modulates practice-induced motor memory formation. European Journal of Neuroscience, 27, 730–738.CrossRefPubMed
go back to reference Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., et al. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25, 9339–9346.CrossRefPubMed Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., et al. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25, 9339–9346.CrossRefPubMed
go back to reference Stöcker, C., Sebald, A., & Hoffmann, J. (2003). The influence of response-effect compatibility in a serial reaction time task. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 56, 685–703.CrossRef Stöcker, C., Sebald, A., & Hoffmann, J. (2003). The influence of response-effect compatibility in a serial reaction time task. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 56, 685–703.CrossRef
go back to reference Trempe, M., Sabourin, M., Rohbanfard, H., & Proteau, L. (2011). Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task. Experimental Brain Research, 209, 181–192.CrossRefPubMed Trempe, M., Sabourin, M., Rohbanfard, H., & Proteau, L. (2011). Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task. Experimental Brain Research, 209, 181–192.CrossRefPubMed
go back to reference Zhang, X., de Beukelaar, T. T., Possel, J., Olaerts, M., Swinnen, S. P., Woolley, D. G., et al. (2011). Movement observation improves early consolidation of motor memory. Journal of Neuroscience, 31, 11515–11520.CrossRefPubMed Zhang, X., de Beukelaar, T. T., Possel, J., Olaerts, M., Swinnen, S. P., Woolley, D. G., et al. (2011). Movement observation improves early consolidation of motor memory. Journal of Neuroscience, 31, 11515–11520.CrossRefPubMed
Metagegevens
Titel
Crossmodal encoding of motor sequence memories
Auteurs
Marianne A. Stephan
Brittany Heckel
Sunbin Song
Leonardo G. Cohen
Publicatiedatum
01-03-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2015
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-014-0568-2

Andere artikelen Uitgave 2/2015

Psychological Research 2/2015 Naar de uitgave