Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2022

13-02-2021 | Original Article

Cross-dimensional magnitude interaction is modulated by representational noise: evidence from space–time interaction

Auteurs: Zhenguang G. Cai, Ruiming Wang

Gepubliceerd in: Psychological Research | Uitgave 1/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Magnitudes along different dimensions (e.g., space and time) tend to interact with each other in perception, with some magnitude dimensions more susceptible to cross-dimensional interference than others. What causes such asymmetries in cross-dimensional magnitude interaction is being debated. The current study investigated whether the representational noise of magnitudes modulates the (a)symmetry in space–time interaction. In three experiments using different formats of length, we showed that dynamic unfilled lengths resulted in a higher representational noise than either static unfilled length or static filled length. Correspondingly, we observed that the time-on-space effect was larger for dynamic unfilled lengths than for static unfilled length or static filled length (and it did not differ between the latter two). Further correlational analyses showed that the susceptibility of a target dimension to the influence of a concurrent dimension increased as a function of participants’ representational noise in the target dimension (e.g., the noisier length representations, the larger the time-on-space effect). In all, our study showed that the representational noise of space and time modulates the way the two dimensions interact. These findings suggest that cross-dimensional magnitude interactions arise as a result of memory interference, with noisier magnitudes being more prone to being nudged by concurrent magnitudes in other dimensions. Such memory interference can be seen as a result of Bayesian inference with correlated priors between magnitude dimensions.
Voetnoten
1
A power analysis (using the "pwr" package in R) on the space-on-time effect in Casasanto and Boroditsky (2008) (with the effect size averaged across experiments) showed that to reach a power of 0.80 at α = 0.05 with two predictors in a multiple regression design requires a minimum of 6 data cells. The design in this and the following experiments (with 25 data cells), thus, clearly exceeds this minimum.
 
2
It seems that reproduced durations were the longest in Experiment 3 (where the stimulus duration was defined as the time interval between the two bars) and second longest in Experiment 1. It is likely that more attention was needed to process unfilled lengths in both Experiments 3 and 1, leading to longer apparent durations (e.g., Zakay & Block, 1995); in addition, participants might have inadvertently timed the stimulus duration from the onset of the first vertical bar to the offset of the second vertical bar, hence leading to longer apparent duration. It should be noted that these possible confounds changed the intercept (i.e., longer reproductions across all stimulus durations/lengths) but would have little impact on the slopes (e.g., how reproduced durations changed as a function of stimulus length), which the current paper is interested in.
 
3
One might be puzzled by the null difference here given that stimulus duration significantly affected length reproduction in Experiment 2 but not in Experiment 1. Note the effect size being not significantly different between the two experiments simply indicates that the difference in the effect sizes is not large enough to be statistically detectable or meaningful; this finding does not mean that the effect was similarly present or absent in both experiments (i.e., it is still possible that the effect was statistically present in one experiment but not in the other in individual analyses); therefore, the null difference here does not contradict the results from the individual experiments.
 
Literatuur
go back to reference Agrillo, C., Ranpura, A., & Butterworth, B. (2010). Time and numerosity estimation are independent: Behavioral evidence for two different systems using a conflict paradigm. Cognitive Neuroscience, 1, 96–101.PubMedCrossRef Agrillo, C., Ranpura, A., & Butterworth, B. (2010). Time and numerosity estimation are independent: Behavioral evidence for two different systems using a conflict paradigm. Cognitive Neuroscience, 1, 96–101.PubMedCrossRef
go back to reference Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14(3), 257–262.PubMedCrossRef Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14(3), 257–262.PubMedCrossRef
go back to reference Allan, L. G. (1979). The perception of time. Perception & Psychophysics, 26(5), 340–354.CrossRef Allan, L. G. (1979). The perception of time. Perception & Psychophysics, 26(5), 340–354.CrossRef
go back to reference Amadeo, M. B., Campus, C., & Gori, M. (2019). Time attracts auditory space representation during development. Behavioural Brain Research, 376, 112185.PubMedCrossRef Amadeo, M. B., Campus, C., & Gori, M. (2019). Time attracts auditory space representation during development. Behavioural Brain Research, 376, 112185.PubMedCrossRef
go back to reference Barbaree, H. E., & Mewhort, D. J. K. (1994). The effects of the z-score transformation on measures of relative erectile response strength: A re-appraisal. Behaviour Research and Therapy, 32(5), 547–558.PubMedCrossRef Barbaree, H. E., & Mewhort, D. J. K. (1994). The effects of the z-score transformation on measures of relative erectile response strength: A re-appraisal. Behaviour Research and Therapy, 32(5), 547–558.PubMedCrossRef
go back to reference Besner, D., & Coltheart, M. (1979). Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 17(5), 467–472.PubMedCrossRef Besner, D., & Coltheart, M. (1979). Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 17(5), 467–472.PubMedCrossRef
go back to reference Boroditsky, L. (2000). Metaphoric Structuring: Understanding time through spatial metaphors. Cognition, 75, 1–28.PubMedCrossRef Boroditsky, L. (2000). Metaphoric Structuring: Understanding time through spatial metaphors. Cognition, 75, 1–28.PubMedCrossRef
go back to reference Boroditsky, L., & Ramscar, M. (2002). The roles of body and mind in abstract thought. Psychological Science, 13, 185–189.PubMedCrossRef Boroditsky, L., & Ramscar, M. (2002). The roles of body and mind in abstract thought. Psychological Science, 13, 185–189.PubMedCrossRef
go back to reference Bottini, R., Crepaldi, D., Casasanto, D., Crollen, V., & Collignon, O. (2015). Space and time in the sighted and blind. Cognition, 141, 67–72.PubMedCrossRef Bottini, R., Crepaldi, D., Casasanto, D., Crollen, V., & Collignon, O. (2015). Space and time in the sighted and blind. Cognition, 141, 67–72.PubMedCrossRef
go back to reference Bottini, R., Guarino, C., & Casasanto, D. (2013). Space is special: A domain-specific mapping between time and nontemporal magnitude. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the cognitive science society (pp. 233–238). Austin, TX: Cognitive Science Society. Bottini, R., Guarino, C., & Casasanto, D. (2013). Space is special: A domain-specific mapping between time and nontemporal magnitude. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the cognitive science society (pp. 233–238). Austin, TX: Cognitive Science Society.
go back to reference Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1831–1840.CrossRef Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1831–1840.CrossRef
go back to reference Cai, Z. G., & Connell, L. (2015). Space–time interdependence: Evidence against asymmetric mapping between time and space. Cognition, 136, 268–281.PubMedCrossRef Cai, Z. G., & Connell, L. (2015). Space–time interdependence: Evidence against asymmetric mapping between time and space. Cognition, 136, 268–281.PubMedCrossRef
go back to reference Cai, Z. G., & Connell, L. (2016). On magnitudes in memory: An internal clock account of space–time interaction. Acta Psychologica, 168, 1–11.PubMedCrossRef Cai, Z. G., & Connell, L. (2016). On magnitudes in memory: An internal clock account of space–time interaction. Acta Psychologica, 168, 1–11.PubMedCrossRef
go back to reference Cai, Z. G., Connell, L., & Holler, J. (2013). Time does not flow without language: Spatial distance affects temporal duration regardless of movement or direction. Psychonomic Bulletin & Review, 20, 973–980.CrossRef Cai, Z. G., Connell, L., & Holler, J. (2013). Time does not flow without language: Spatial distance affects temporal duration regardless of movement or direction. Psychonomic Bulletin & Review, 20, 973–980.CrossRef
go back to reference Cai, Z. G., Wang, R., Shen, M., & Speekenbrink, M. (2018). Cross-dimensional magnitude interactions arise from memory interference. Cognitive psychology, 106, 21–42.PubMedCrossRef Cai, Z. G., Wang, R., Shen, M., & Speekenbrink, M. (2018). Cross-dimensional magnitude interactions arise from memory interference. Cognitive psychology, 106, 21–42.PubMedCrossRef
go back to reference Cai, Z. G., Wu, L., & Wang, R. (2020). Cross-dimensional magnitude interactions reflect statistical correlations among physical dimensions: Evidence from space-time interaction. https://osf.io/spmzj/. Cai, Z. G., Wu, L., & Wang, R. (2020). Cross-dimensional magnitude interactions reflect statistical correlations among physical dimensions: Evidence from space-time interaction. https://​osf.​io/​spmzj/​.
go back to reference Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2009). Dissociations and interactions between time, numerosity and space processing. Neuropsychologia, 47, 2732–2748.PubMedPubMedCentralCrossRef Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2009). Dissociations and interactions between time, numerosity and space processing. Neuropsychologia, 47, 2732–2748.PubMedPubMedCentralCrossRef
go back to reference Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106, 579–593.PubMedCrossRef Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106, 579–593.PubMedCrossRef
go back to reference Casasanto, D., & Bottini, R. (2014). Mirror reading can reverse the flow of time. Journal of Experimental Psychology: General, 143(2), 473.CrossRef Casasanto, D., & Bottini, R. (2014). Mirror reading can reverse the flow of time. Journal of Experimental Psychology: General, 143(2), 473.CrossRef
go back to reference Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2010). Space and time in the child’s mind: Evidence for a cross-dimensional asymmetry. Cognitive Science, 34, 387–405.PubMedCrossRef Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2010). Space and time in the child’s mind: Evidence for a cross-dimensional asymmetry. Cognitive Science, 34, 387–405.PubMedCrossRef
go back to reference Chang, A. Y. C., Tzeng, O. J. L., Hung, D. L., & Wu, D. H. (2011). Big time is not always long numerical magnitude automatically affects time reproduction. Psychological Science, 22, 1567–1573.PubMedCrossRef Chang, A. Y. C., Tzeng, O. J. L., Hung, D. L., & Wu, D. H. (2011). Big time is not always long numerical magnitude automatically affects time reproduction. Psychological Science, 22, 1567–1573.PubMedCrossRef
go back to reference Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. Journal of Neuroscience, 32(3), 1056–1060.PubMedCrossRef Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. Journal of Neuroscience, 32(3), 1056–1060.PubMedCrossRef
go back to reference de Hevia, M. D., Girelli, L., & Vallar, G. (2006). Numbers and space: A cognitive illusion? Experimental Brain Research, 168(1–2), 254–264.CrossRef de Hevia, M. D., Girelli, L., & Vallar, G. (2006). Numbers and space: A cognitive illusion? Experimental Brain Research, 168(1–2), 254–264.CrossRef
go back to reference de Hevia, M. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110(2), 198–207.PubMedCrossRef de Hevia, M. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110(2), 198–207.PubMedCrossRef
go back to reference DeLong, A. J. (1981). Phenomenological space-time: Toward an experiential relativity. Science, 213, 681–683.PubMedCrossRef DeLong, A. J. (1981). Phenomenological space-time: Toward an experiential relativity. Science, 213, 681–683.PubMedCrossRef
go back to reference Dormal, V., Andres, M., & Pesenti, M. (2008). Dissociation of numerosity and duration processing in the left intraparietal sulcus: A transcranial magnetic stimulation study. Cortex, 44, 462–469.PubMedCrossRef Dormal, V., Andres, M., & Pesenti, M. (2008). Dissociation of numerosity and duration processing in the left intraparietal sulcus: A transcranial magnetic stimulation study. Cortex, 44, 462–469.PubMedCrossRef
go back to reference Dormal, V., & Pesenti, M. (2013). Processing numerosity, length and duration in a three-dimensional Stroop-like task: Towards a gradient of processing automaticity? Psychological Research Psychologische Forschung, 77, 116–127.CrossRef Dormal, V., & Pesenti, M. (2013). Processing numerosity, length and duration in a three-dimensional Stroop-like task: Towards a gradient of processing automaticity? Psychological Research Psychologische Forschung, 77, 116–127.CrossRef
go back to reference Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration interference: A Stroop experiment. Acta Psychologica, 121, 109–124.PubMedCrossRef Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration interference: A Stroop experiment. Acta Psychologica, 121, 109–124.PubMedCrossRef
go back to reference Droit-Volet, S., Clément, A., & Fayol, M. (2003). Time and number discrimination in a bisection task with a sequence of stimuli: A developmental approach. Journal of Experimental Child Psychology, 84, 63–76.PubMedCrossRef Droit-Volet, S., Clément, A., & Fayol, M. (2003). Time and number discrimination in a bisection task with a sequence of stimuli: A developmental approach. Journal of Experimental Child Psychology, 84, 63–76.PubMedCrossRef
go back to reference Droit-Volet, S., Clément, A., & Fayol, M. (2008). Time, number and length: Similarities and differences in discrimination in adults and children. The Quarterly Journal of Experimental Psychology, 61(12), 1827–1846.PubMedCrossRef Droit-Volet, S., Clément, A., & Fayol, M. (2008). Time, number and length: Similarities and differences in discrimination in adults and children. The Quarterly Journal of Experimental Psychology, 61(12), 1827–1846.PubMedCrossRef
go back to reference Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433.PubMedCrossRef Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433.PubMedCrossRef
go back to reference Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822–826.PubMedCrossRef Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822–826.PubMedCrossRef
go back to reference Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.PubMedCrossRef Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.PubMedCrossRef
go back to reference Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76(2), 104–122.PubMedCrossRef Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76(2), 104–122.PubMedCrossRef
go back to reference Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.CrossRef Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.CrossRef
go back to reference Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395.CrossRef Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395.CrossRef
go back to reference Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103, 19599–19604.CrossRef Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103, 19599–19604.CrossRef
go back to reference Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., et al. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. Neuroimage, 25(3), 888–898.PubMedCrossRef Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., et al. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. Neuroimage, 25(3), 888–898.PubMedCrossRef
go back to reference Kranjec, A., Lehet, M., Woods, A. J., & Chatterjee, A. (2019). Time is not more abstract than space in sound. Frontier in Psychology, 10, 48.CrossRef Kranjec, A., Lehet, M., Woods, A. J., & Chatterjee, A. (2019). Time is not more abstract than space in sound. Frontier in Psychology, 10, 48.CrossRef
go back to reference Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago and London: The University of Chicago Press. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago and London: The University of Chicago Press.
go back to reference Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. Chicago: University of Chicago Press. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. Chicago: University of Chicago Press.
go back to reference Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.CrossRef Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.CrossRef
go back to reference Lourenco, S. F., Ayzenberg, V., & Lyu, J. (2016). A general magnitude system in human adults: Evidence from a subliminal priming paradigm. Cortex, 81, 93–103.PubMedCrossRef Lourenco, S. F., Ayzenberg, V., & Lyu, J. (2016). A general magnitude system in human adults: Evidence from a subliminal priming paradigm. Cortex, 81, 93–103.PubMedCrossRef
go back to reference Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881.PubMedCrossRef Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881.PubMedCrossRef
go back to reference Lourenco, S. F., & Longo, M. R. (2011). Origins and development of generalized magnitude representation. In S. Dehaene & E. M. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 225–244). London: Elsevier.CrossRef Lourenco, S. F., & Longo, M. R. (2011). Origins and development of generalized magnitude representation. In S. Dehaene & E. M. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 225–244). London: Elsevier.CrossRef
go back to reference Magnani, B., Oliveri, M., & Frassinetti, F. (2014). Exploring the reciprocal modulation of time and space in dancers and non-dancers. Experimental Brain Research, 232, 3191.PubMedCrossRef Magnani, B., Oliveri, M., & Frassinetti, F. (2014). Exploring the reciprocal modulation of time and space in dancers and non-dancers. Experimental Brain Research, 232, 3191.PubMedCrossRef
go back to reference Manyam, V. J. (1986). A psychophysical measure of visual and kinaesthetic spatial discriminative abilities of adults and children. Perception, 15(3), 313-324.3199.PubMedCrossRef Manyam, V. J. (1986). A psychophysical measure of visual and kinaesthetic spatial discriminative abilities of adults and children. Perception, 15(3), 313-324.3199.PubMedCrossRef
go back to reference Martin, B., Wiener, M., & van Wassenhove, V. (2017). A Bayesian perspective on accumulation in the magnitude system. Scientific Reports, 7, 1–14.CrossRef Martin, B., Wiener, M., & van Wassenhove, V. (2017). A Bayesian perspective on accumulation in the magnitude system. Scientific Reports, 7, 1–14.CrossRef
go back to reference Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.PubMed Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.PubMed
go back to reference Merritt, D. J., Casasanto, D., & Brannon, E. M. (2010). Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition, 117, 191–202.PubMedPubMedCentralCrossRef Merritt, D. J., Casasanto, D., & Brannon, E. M. (2010). Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition, 117, 191–202.PubMedPubMedCentralCrossRef
go back to reference Moon, J. A., Fincham, J. M., Betts, S., & Anderson, J. R. (2015). End effects and cross-dimensional interference in identification of time and length: Evidence for a common memory mechanism. Cognitive, Affective, & Behavioral Neuroscience, 15, 680–695.CrossRef Moon, J. A., Fincham, J. M., Betts, S., & Anderson, J. R. (2015). End effects and cross-dimensional interference in identification of time and length: Evidence for a common memory mechanism. Cognitive, Affective, & Behavioral Neuroscience, 15, 680–695.CrossRef
go back to reference Nicholls, M. E., Lew, M., Loetscher, T., & Yates, M. J. (2011). The importance of response type to the relationship between temporal order and numerical magnitude. Attention, Perception, & Psychophysics, 73, 1604–1613.CrossRef Nicholls, M. E., Lew, M., Loetscher, T., & Yates, M. J. (2011). The importance of response type to the relationship between temporal order and numerical magnitude. Attention, Perception, & Psychophysics, 73, 1604–1613.CrossRef
go back to reference O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690.CrossRef O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690.CrossRef
go back to reference Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., et al. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438, 308–311.PubMedCrossRef Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., et al. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438, 308–311.PubMedCrossRef
go back to reference Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19, 285–293.PubMedCrossRef Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19, 285–293.PubMedCrossRef
go back to reference Pufall, P. B., & Shaw, R. E. (1972). Precocious thoughts on number: The long and the short of it. Developmental Psychology, 7(1), 62.CrossRef Pufall, P. B., & Shaw, R. E. (1972). Precocious thoughts on number: The long and the short of it. Developmental Psychology, 7(1), 62.CrossRef
go back to reference Rammsayer, T. H., & Verner, M. (2015). Larger visual stimuli are perceived to last longer from time to time: The internal clock is not affected by nontemporal visual stimulus size. Journal of Vision, 15, 5.PubMedCrossRef Rammsayer, T. H., & Verner, M. (2015). Larger visual stimuli are perceived to last longer from time to time: The internal clock is not affected by nontemporal visual stimulus size. Journal of Vision, 15, 5.PubMedCrossRef
go back to reference Riemer, M., Diersch, N., Bublatzky, F., & Wolbers, T. (2016). Space, time, and numbers in the right posterior parietal cortex: Differences between response code associations and congruency effects. NeuroImage, 129, 72–79.PubMedCrossRef Riemer, M., Diersch, N., Bublatzky, F., & Wolbers, T. (2016). Space, time, and numbers in the right posterior parietal cortex: Differences between response code associations and congruency effects. NeuroImage, 129, 72–79.PubMedCrossRef
go back to reference Schultz, L. M., & Petersik, J. T. (1994). Visual-haptic relations in a two-dimensional size-matching task. Perceptual and Motor Skills, 78(2), 395–402.PubMedCrossRef Schultz, L. M., & Petersik, J. T. (1994). Visual-haptic relations in a two-dimensional size-matching task. Perceptual and Motor Skills, 78(2), 395–402.PubMedCrossRef
go back to reference Schulze-Bonsel, K., Feltgen, N., Burau, H., Hansen, L., & Bach, M. (2006). Visual acuities “hand motion” and “counting fingers” can be quantified with the Freiburg visual acuity test. Investigative Ophthalmology & Visual Science, 47(3), 1236–1240.CrossRef Schulze-Bonsel, K., Feltgen, N., Burau, H., Hansen, L., & Bach, M. (2006). Visual acuities “hand motion” and “counting fingers” can be quantified with the Freiburg visual acuity test. Investigative Ophthalmology & Visual Science, 47(3), 1236–1240.CrossRef
go back to reference Spence, C. (2009). Explaining the Colavita visual dominance effect. Progress in Brain Research, 176, 245–258.PubMedCrossRef Spence, C. (2009). Explaining the Colavita visual dominance effect. Progress in Brain Research, 176, 245–258.PubMedCrossRef
go back to reference Srinivasan, M., & Carey, S. (2010). The long and the short of it: on the nature and origin of functional overlap between representations of space and time. Cognition, 116, 217–241.PubMedPubMedCentralCrossRef Srinivasan, M., & Carey, S. (2010). The long and the short of it: on the nature and origin of functional overlap between representations of space and time. Cognition, 116, 217–241.PubMedPubMedCentralCrossRef
go back to reference Starr, A., & Brannon, E. M. (2016). Visuospatial working memory influences the interaction between space and time. Psychonomic Bulletin & Review, 23, 1839–1845.CrossRef Starr, A., & Brannon, E. M. (2016). Visuospatial working memory influences the interaction between space and time. Psychonomic Bulletin & Review, 23, 1839–1845.CrossRef
go back to reference Storch, D., & Zimmermann, E. (2019). The effect of space on subjective time is mediated by apparent velocity. Journal of Vision, 19(14), 19–19.PubMedCrossRef Storch, D., & Zimmermann, E. (2019). The effect of space on subjective time is mediated by apparent velocity. Journal of Vision, 19(14), 19–19.PubMedCrossRef
go back to reference Szűcs, D., & Soltész, F. (2007). Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia, 45(14), 3190–3202.PubMedCrossRef Szűcs, D., & Soltész, F. (2007). Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia, 45(14), 3190–3202.PubMedCrossRef
go back to reference Thomas, E. A., & Cantor, N. E. (1975). On the duality of simultaneous time and size perception. Attention, Perception, & Psychophysics, 18(1), 44–48.CrossRef Thomas, E. A., & Cantor, N. E. (1975). On the duality of simultaneous time and size perception. Attention, Perception, & Psychophysics, 18(1), 44–48.CrossRef
go back to reference Thomas, E. A., & Cantor, N. E. (1976). Simultaneous time and size perception. Attention, Perception, & Psychophysics, 19(4), 353–360.CrossRef Thomas, E. A., & Cantor, N. E. (1976). Simultaneous time and size perception. Attention, Perception, & Psychophysics, 19(4), 353–360.CrossRef
go back to reference Trommershauser, J., Kording, K., & Landy, M. S. (Eds.). (2011). Sensory cue integration. Oxford: Oxford University Press. Trommershauser, J., Kording, K., & Landy, M. S. (Eds.). (2011). Sensory cue integration. Oxford: Oxford University Press.
go back to reference Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488.PubMedCrossRef Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488.PubMedCrossRef
go back to reference Walsh, V. (2014). A theory of magnitude: The parts that sum to numbers. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition. Oxford: Oxford University Press. Walsh, V. (2014). A theory of magnitude: The parts that sum to numbers. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition. Oxford: Oxford University Press.
go back to reference Wearden, J. H., Denovan, L., Fakhri, M., & Haworth, R. (1997). Scalar timing in temporal generalization in humans with longer stimulus durations. Journal of Experimental Psychology: Animal Behavior Processes, 23, 502–511.PubMed Wearden, J. H., Denovan, L., Fakhri, M., & Haworth, R. (1997). Scalar timing in temporal generalization in humans with longer stimulus durations. Journal of Experimental Psychology: Animal Behavior Processes, 23, 502–511.PubMed
go back to reference Wehrman, J. J., Kaplan, D. M., & Sowman, P. F. (2020). Local context effects in the magnitude-duration illusion: Size but not numerical value sequentially alters perceived duration. Acta Psychologica, 204, 103016.PubMedCrossRef Wehrman, J. J., Kaplan, D. M., & Sowman, P. F. (2020). Local context effects in the magnitude-duration illusion: Size but not numerical value sequentially alters perceived duration. Acta Psychologica, 204, 103016.PubMedCrossRef
go back to reference Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209–224.PubMedCrossRef Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209–224.PubMedCrossRef
go back to reference Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7, 1–5.PubMedCrossRef Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7, 1–5.PubMedCrossRef
go back to reference Zakay, D., & Block, R. A. (1995). An attentional-gate model of prospective time estimation. In M. Richelle, V. De Keyser, G. d’Ydewalle, & A. Vandierendonck (Eds.), Time and the dynamic control of behavior (pp. 167–178). Liège, Belgium: Universite de Liege. Zakay, D., & Block, R. A. (1995). An attentional-gate model of prospective time estimation. In M. Richelle, V. De Keyser, G. d’Ydewalle, & A. Vandierendonck (Eds.), Time and the dynamic control of behavior (pp. 167–178). Liège, Belgium: Universite de Liege.
go back to reference Zimmermann, E., & Cicchini, G. M. (2020). Temporal context affects interval timing at the perceptual level. Scientific Reports, 10(1), 1–10.CrossRef Zimmermann, E., & Cicchini, G. M. (2020). Temporal context affects interval timing at the perceptual level. Scientific Reports, 10(1), 1–10.CrossRef
Metagegevens
Titel
Cross-dimensional magnitude interaction is modulated by representational noise: evidence from space–time interaction
Auteurs
Zhenguang G. Cai
Ruiming Wang
Publicatiedatum
13-02-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-020-01472-4

Andere artikelen Uitgave 1/2022

Psychological Research 1/2022 Naar de uitgave