Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2019

20-10-2017 | Original Article

Contrasting effects of adaptation to a visuomotor rotation on explicit and implicit measures of sensory coupling

Auteurs: Miya K. Rand, Herbert Heuer

Gepubliceerd in: Psychological Research | Uitgave 5/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

We previously investigated sensory coupling of the sensed positions of cursor and hand in a cursor-control task and found differential characteristics of implicit and explicit measures of the bias of sensed hand position toward the position of the cursor. The present study further tested whether adaptation to a visuomotor rotation differentially affects these two measures. Participants made center-out reaching movements to remembered targets while looking at a rotated feedback cursor. After sets of practice trials with constant (adaptation condition) or random (control condition) visuomotor rotations, test trials served to assess sensory coupling. In these trials, participants judged the position of the hand at the end of the center-out movement, and the deviation of these judgments from the physical hand positions served as explicit measure of the bias of sensed hand position toward the position of the cursor, whereas the implicit measure was based on the direction of the return movement. The results showed that inter-individual variability of explicitly assessed biases of sensed hand position toward the cursor position was less in the adaptation condition than in the control condition. Conversely, no such changes were observed for the implicit measure of the bias of sensed hand position, revealing contrasting effects of adaptation on the explicit and implicit measures. These results suggest that biases of explicitly sensed hand position reflect sensory coupling of neural representations that are altered by visuomotor adaptation. In contrast, biases of implicitly sensed hand position reflect sensory coupling of neural representations that are unaffected by adaptation.
Literatuur
go back to reference Abeele, S., & Bock, O. (2001a). Mechanisms for sensorimotor adaptation to rotated visual input. Experimental Brain Research, 139, 248–253.CrossRefPubMed Abeele, S., & Bock, O. (2001a). Mechanisms for sensorimotor adaptation to rotated visual input. Experimental Brain Research, 139, 248–253.CrossRefPubMed
go back to reference Abeele, S., & Bock, O. (2001b). Sensorimotor adaptation to rotated visual input: Different mechanisms for small versus large rotations. Experimental Brain Research, 140, 407–410.CrossRefPubMed Abeele, S., & Bock, O. (2001b). Sensorimotor adaptation to rotated visual input: Different mechanisms for small versus large rotations. Experimental Brain Research, 140, 407–410.CrossRefPubMed
go back to reference Bock, O., & Eckmiller, R. (1986). Goal-directed arm movements in absence of visual guidance: Evidence for amplitude rather than position control. Experimental Brain Research, 62, 451–458.CrossRefPubMed Bock, O., & Eckmiller, R. (1986). Goal-directed arm movements in absence of visual guidance: Evidence for amplitude rather than position control. Experimental Brain Research, 62, 451–458.CrossRefPubMed
go back to reference Bresciani, J.-P., Dammeier, F., & Ernst, M. O. (2006). Vision and touch are automatically integrated for the perception of sequences of events. Journal of Vision, 6, 554–564.CrossRefPubMed Bresciani, J.-P., Dammeier, F., & Ernst, M. O. (2006). Vision and touch are automatically integrated for the perception of sequences of events. Journal of Vision, 6, 554–564.CrossRefPubMed
go back to reference Brown, L. E., Rosenbaum, D. A., & Sainburg, R. L. (2003a). Limb position drift: Implications for control of posture and movement. Journal of Neurophysiology, 90, 3105–3118.CrossRefPubMed Brown, L. E., Rosenbaum, D. A., & Sainburg, R. L. (2003a). Limb position drift: Implications for control of posture and movement. Journal of Neurophysiology, 90, 3105–3118.CrossRefPubMed
go back to reference Brown, L. E., Rosenbaum, D. A., & Sainburg, R. L. (2003b). Movement speed effects on limb position drift. Experimental Brain Research, 153, 266–274.CrossRefPubMed Brown, L. E., Rosenbaum, D. A., & Sainburg, R. L. (2003b). Movement speed effects on limb position drift. Experimental Brain Research, 153, 266–274.CrossRefPubMed
go back to reference Buch, E. R., Young, S., & Contreras-Vidal, J. L. (2003). Visuomotor adaptation in normal aging. Learning & Memory, 10, 55–63.CrossRef Buch, E. R., Young, S., & Contreras-Vidal, J. L. (2003). Visuomotor adaptation in normal aging. Learning & Memory, 10, 55–63.CrossRef
go back to reference Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133, 625–637.CrossRefPubMed Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133, 625–637.CrossRefPubMed
go back to reference Cressman, E. K., & Henriques, D. Y. P. (2009). Sensory recalibration of hand position following visuomotor adaptation. Journal of Neurophysiology, 102, 3505–3518.CrossRefPubMed Cressman, E. K., & Henriques, D. Y. P. (2009). Sensory recalibration of hand position following visuomotor adaptation. Journal of Neurophysiology, 102, 3505–3518.CrossRefPubMed
go back to reference Cressman, E. K., & Henriques, D. Y. P. (2010). Reach adaptation and proprioceptive recalibration following exposure to misaligned sensory input. Journal of Neurophysiology, 103, 1888–1895.CrossRefPubMed Cressman, E. K., & Henriques, D. Y. P. (2010). Reach adaptation and proprioceptive recalibration following exposure to misaligned sensory input. Journal of Neurophysiology, 103, 1888–1895.CrossRefPubMed
go back to reference Debats, N. B., Ernst, M. O., & Heuer, H. (2017). Perceptual attraction in tool-use: Evidence for a reliability-based weighting mechanism. Journal of Neurophysiology, 117, 1569–1580.CrossRefPubMedPubMedCentral Debats, N. B., Ernst, M. O., & Heuer, H. (2017). Perceptual attraction in tool-use: Evidence for a reliability-based weighting mechanism. Journal of Neurophysiology, 117, 1569–1580.CrossRefPubMedPubMedCentral
go back to reference Dijkerman, H. C., & de Haan, E. H. F. (2007). Somatosensory processes subserving perception and action. Behavioral and Brain Sciences, 30, 189–239.CrossRefPubMed Dijkerman, H. C., & de Haan, E. H. F. (2007). Somatosensory processes subserving perception and action. Behavioral and Brain Sciences, 30, 189–239.CrossRefPubMed
go back to reference Ernst, M. O. (2006). A Bayesian view on multimodal cue integration. In G. Knoblich, I. M. Thornton, M. Grosjean, & M. Shiffrar (Eds.), Human body perception from the inside out (pp. 105–131). Oxford: Oxford University Press. Ernst, M. O. (2006). A Bayesian view on multimodal cue integration. In G. Knoblich, I. M. Thornton, M. Grosjean, & M. Shiffrar (Eds.), Human body perception from the inside out (pp. 105–131). Oxford: Oxford University Press.
go back to reference Ernst, M. O. (2012). Optimal multisensory integration: Assumptions and limits. In B. E. Stein (Ed.), The New Handbook of Multisensory Processes (pp. 1084–1124). Cambridge: MIT Press. Ernst, M. O. (2012). Optimal multisensory integration: Assumptions and limits. In B. E. Stein (Ed.), The New Handbook of Multisensory Processes (pp. 1084–1124). Cambridge: MIT Press.
go back to reference Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169.CrossRefPubMed Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169.CrossRefPubMed
go back to reference Goble, D. J., Coxon, J. P., Van Impe, A., Geurts, M., Van Hecke, W., Sunaert, S., … Swinnen, S. P. (2012). The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Human Brain Mapping, 33, 895–908.CrossRefPubMed Goble, D. J., Coxon, J. P., Van Impe, A., Geurts, M., Van Hecke, W., Sunaert, S., … Swinnen, S. P. (2012). The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Human Brain Mapping, 33, 895–908.CrossRefPubMed
go back to reference Harrar, V., & Harris, L. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Experimental Brain Research, 186, 517–524.CrossRefPubMed Harrar, V., & Harris, L. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Experimental Brain Research, 186, 517–524.CrossRefPubMed
go back to reference Harrar, V., Harris, L. R., & Spence, C. (2017). Multisensory integration is independent of perceived simultaneity. Experimental Brain Research, 235, 763–775.CrossRefPubMed Harrar, V., Harris, L. R., & Spence, C. (2017). Multisensory integration is independent of perceived simultaneity. Experimental Brain Research, 235, 763–775.CrossRefPubMed
go back to reference Hatada, Y., Miall, R. C., & Rossetti, Y. (2006). Long-lasting aftereffect of a single prism adaptation: shifts in vision and proprioception are independent. Experimental Brain Research, 173, 415–424.CrossRefPubMed Hatada, Y., Miall, R. C., & Rossetti, Y. (2006). Long-lasting aftereffect of a single prism adaptation: shifts in vision and proprioception are independent. Experimental Brain Research, 173, 415–424.CrossRefPubMed
go back to reference Hay, J. C., Pick, H. L., & Ikeda, K. (1965). Visual capture produced by prism spectacles. Psychonomic Science, 2, 215–216.CrossRef Hay, J. C., Pick, H. L., & Ikeda, K. (1965). Visual capture produced by prism spectacles. Psychonomic Science, 2, 215–216.CrossRef
go back to reference Heuer, H., Hegele, M., & Rand, M. K. (2013). Age-related variations in the control of electronic tools. In C. M. Schlick, E. Frieling, & J. Wegge (Eds.), Age-Differentiated Work Systems (pp. 369–390). Heidelberg: Springer.CrossRef Heuer, H., Hegele, M., & Rand, M. K. (2013). Age-related variations in the control of electronic tools. In C. M. Schlick, E. Frieling, & J. Wegge (Eds.), Age-Differentiated Work Systems (pp. 369–390). Heidelberg: Springer.CrossRef
go back to reference Heuer, H., & Sangals, J. (1998). Task-dependent mixtures of coordinate systems in visuomotor transformations. Experimental Brain Research, 119, 224–236.CrossRefPubMed Heuer, H., & Sangals, J. (1998). Task-dependent mixtures of coordinate systems in visuomotor transformations. Experimental Brain Research, 119, 224–236.CrossRefPubMed
go back to reference Heuer, H., & Sülzenbrück, S. (2012). The influence of the dynamic transformation of a sliding lever on aiming errors. Neuroscience, 207, 137–147.CrossRefPubMed Heuer, H., & Sülzenbrück, S. (2012). The influence of the dynamic transformation of a sliding lever on aiming errors. Neuroscience, 207, 137–147.CrossRefPubMed
go back to reference Holmes, N. P., Crozier, G., & Spence, C. (2004). When mirrors lie: “Visual capture” of arm position impairs reaching performance. Cognitive, Affective & Behavioral Neuroscience, 4, 193–200.CrossRef Holmes, N. P., Crozier, G., & Spence, C. (2004). When mirrors lie: “Visual capture” of arm position impairs reaching performance. Cognitive, Affective & Behavioral Neuroscience, 4, 193–200.CrossRef
go back to reference Holmes, N. P., & Spence, C. (2005). Visual bias of unseen hand position with a mirror: Spatial and temporal factors. Experimental Brain Research, 166, 489–497.CrossRefPubMedPubMedCentral Holmes, N. P., & Spence, C. (2005). Visual bias of unseen hand position with a mirror: Spatial and temporal factors. Experimental Brain Research, 166, 489–497.CrossRefPubMedPubMedCentral
go back to reference Izawa, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2012). Cerebellar contributions to reach adaptation and learning sensory consequences of action. Journal of Neuroscience, 32, 4230–4239.CrossRefPubMed Izawa, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2012). Cerebellar contributions to reach adaptation and learning sensory consequences of action. Journal of Neuroscience, 32, 4230–4239.CrossRefPubMed
go back to reference Kagerer, F. A., Contreras-Vidal, J. L., & Stelmach, G. E. (1997). Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 115, 557–561.CrossRefPubMed Kagerer, F. A., Contreras-Vidal, J. L., & Stelmach, G. E. (1997). Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 115, 557–561.CrossRefPubMed
go back to reference Kavounoudias, A., Roll, J. P., Anton, J. L., Nazarian, B., Roth, M., & Roll, R. (2008). Proprio-tactile integration for kinesthetic perception: An fMRI study. Neuropsychologia, 46, 567–575.CrossRefPubMed Kavounoudias, A., Roll, J. P., Anton, J. L., Nazarian, B., Roth, M., & Roll, R. (2008). Proprio-tactile integration for kinesthetic perception: An fMRI study. Neuropsychologia, 46, 567–575.CrossRefPubMed
go back to reference Kirsch, W., Pfister, R., & Kunde, W. (2016). Spatial action–effect binding. Attention, Perception & Psychophysics, 78, 133–142.CrossRef Kirsch, W., Pfister, R., & Kunde, W. (2016). Spatial action–effect binding. Attention, Perception & Psychophysics, 78, 133–142.CrossRef
go back to reference Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21, 1–9.CrossRef Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21, 1–9.CrossRef
go back to reference Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20, 8916–8924.CrossRefPubMed Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20, 8916–8924.CrossRefPubMed
go back to reference Ladwig, S., Sutter, C., & Müsseler, J. (2012). Crosstalk between proximal and distal action effects during tool use. Zeitschrift für Psychologie, 220, 10–15.CrossRef Ladwig, S., Sutter, C., & Müsseler, J. (2012). Crosstalk between proximal and distal action effects during tool use. Zeitschrift für Psychologie, 220, 10–15.CrossRef
go back to reference Ladwig, S., Sutter, C., & Müsseler, J. (2013). Intra- and intermodal integration of discrepant visual and proprioceptive action effects. Experimental Brain Research, 231, 457–468.CrossRefPubMed Ladwig, S., Sutter, C., & Müsseler, J. (2013). Intra- and intermodal integration of discrepant visual and proprioceptive action effects. Experimental Brain Research, 231, 457–468.CrossRefPubMed
go back to reference Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 278–292). Stanford: Stanford University Press. Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 278–292). Stanford: Stanford University Press.
go back to reference Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press. Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.
go back to reference Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774–785.CrossRefPubMed Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774–785.CrossRefPubMed
go back to reference Morehead, J. R., Qasim, S. E., Crossley, M. J., & Ivry, R. (2015). Savings upon re-aiming in visuomotor adaptation. Journal of Neuroscience, 35, 14386–14396.CrossRefPubMed Morehead, J. R., Qasim, S. E., Crossley, M. J., & Ivry, R. (2015). Savings upon re-aiming in visuomotor adaptation. Journal of Neuroscience, 35, 14386–14396.CrossRefPubMed
go back to reference Neggers, S. F. W., & Bekkering, H. (2000). Ocular gaze is anchored to the target of an ongoing pointing movement. Journal of Neurophysiology, 83, 639–651.CrossRefPubMed Neggers, S. F. W., & Bekkering, H. (2000). Ocular gaze is anchored to the target of an ongoing pointing movement. Journal of Neurophysiology, 83, 639–651.CrossRefPubMed
go back to reference Paillard, J. (1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and Space (pp. 163–182). Oxford: Oxford University Press. Paillard, J. (1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and Space (pp. 163–182). Oxford: Oxford University Press.
go back to reference Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92, 1651–1697.CrossRefPubMed Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92, 1651–1697.CrossRefPubMed
go back to reference Rand, M. K., & Heuer, H. (2016). Effects of reliability and global context on explicit and implicit measures of sensed hand position in cursor-control tasks. Frontiers in Psychology, 6, 2056.CrossRefPubMedPubMedCentral Rand, M. K., & Heuer, H. (2016). Effects of reliability and global context on explicit and implicit measures of sensed hand position in cursor-control tasks. Frontiers in Psychology, 6, 2056.CrossRefPubMedPubMedCentral
go back to reference Rand, M. K., & Heuer, H. (in press). Dissociating explicit and implicit measures of sensed hand position in tool use: effect of relative frequency of judging different objects. Attention, Perception, & Psychophysics. Rand, M. K., & Heuer, H. (in press). Dissociating explicit and implicit measures of sensed hand position in tool use: effect of relative frequency of judging different objects. Attention, Perception, & Psychophysics.
go back to reference Rand, M. K., & Stelmach, G. E. (2010). Effects of hand termination and accuracy constraint on eye-hand coordination during sequential two-segment movements. Experimental Brain Research, 207, 197–211.CrossRefPubMed Rand, M. K., & Stelmach, G. E. (2010). Effects of hand termination and accuracy constraint on eye-hand coordination during sequential two-segment movements. Experimental Brain Research, 207, 197–211.CrossRefPubMed
go back to reference Rand, M. K., Wang, L., Müsseler, J., & Heuer, H. (2013). Vision and proprioception in action monitoring by young and older adults. Neurobiology of Aging, 34, 1864–1872.CrossRefPubMed Rand, M. K., Wang, L., Müsseler, J., & Heuer, H. (2013). Vision and proprioception in action monitoring by young and older adults. Neurobiology of Aging, 34, 1864–1872.CrossRefPubMed
go back to reference Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026–2042.CrossRefPubMed Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026–2042.CrossRefPubMed
go back to reference Reichenbach, A., Thielscher, A., Peer, A., Bülthoff, H. H., & Bresciani, J.-P. (2014). A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. NeuroImage, 84, 615–625.CrossRefPubMed Reichenbach, A., Thielscher, A., Peer, A., Bülthoff, H. H., & Bresciani, J.-P. (2014). A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. NeuroImage, 84, 615–625.CrossRefPubMed
go back to reference Rossetti, Y., Desmurget, M., & Prablanc, C. (1995). Vector coding of movement: Vision, proprioception, or both? Journal of Neurophysiology, 74, 457–463.CrossRefPubMed Rossetti, Y., Desmurget, M., & Prablanc, C. (1995). Vector coding of movement: Vision, proprioception, or both? Journal of Neurophysiology, 74, 457–463.CrossRefPubMed
go back to reference Schenk, T., Franz, V., & Bruno, N. (2011). Vision-for-perception and vision-for-action: Which model is compatible with the available psychophysical and neuropsychological data? Vision Research, 51, 812–818.CrossRefPubMed Schenk, T., Franz, V., & Bruno, N. (2011). Vision-for-perception and vision-for-action: Which model is compatible with the available psychophysical and neuropsychological data? Vision Research, 51, 812–818.CrossRefPubMed
go back to reference Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. The Behavioral and Brain Sciences, 17, 367–447.CrossRef Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. The Behavioral and Brain Sciences, 17, 367–447.CrossRef
go back to reference Simani, M. C., McGuire, L. M., & Sabes, P. N. (2007). Visual-shift adaptation is composed of separable sensory and task-dependent effects. Journal of Neurophysiology, 98, 2827–2841.CrossRefPubMedPubMedCentral Simani, M. C., McGuire, L. M., & Sabes, P. N. (2007). Visual-shift adaptation is composed of separable sensory and task-dependent effects. Journal of Neurophysiology, 98, 2827–2841.CrossRefPubMedPubMedCentral
go back to reference Synofzik, M., Lindner, A., & Thier, P. (2008). The cerebellum updates predictions about the visual consequences of one’s behavior. Current Biology, 18, 814–818.CrossRefPubMed Synofzik, M., Lindner, A., & Thier, P. (2008). The cerebellum updates predictions about the visual consequences of one’s behavior. Current Biology, 18, 814–818.CrossRefPubMed
go back to reference Van Beers, R. J., Sittig, A. C., & Denier van der Gon, J. J. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.CrossRefPubMed Van Beers, R. J., Sittig, A. C., & Denier van der Gon, J. J. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.CrossRefPubMed
go back to reference Van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12, 834–837.CrossRefPubMed Van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12, 834–837.CrossRefPubMed
go back to reference Van Dam, L. C. J., & Ernst, M. O. (2013). Knowing each random error of our ways, but hardly correcting for it: An instance of optimal performance. PLoS ONE, 8, e78757.CrossRefPubMedPubMedCentral Van Dam, L. C. J., & Ernst, M. O. (2013). Knowing each random error of our ways, but hardly correcting for it: An instance of optimal performance. PLoS ONE, 8, e78757.CrossRefPubMedPubMedCentral
go back to reference Vindras, P., Desmurget, M., Prablanc, C., & Viviani, P. (1998). Pointing errors reflect biases in the perception of the initial hand position. Journal of Neurophysiology, 79, 3290–3294.CrossRefPubMed Vindras, P., Desmurget, M., Prablanc, C., & Viviani, P. (1998). Pointing errors reflect biases in the perception of the initial hand position. Journal of Neurophysiology, 79, 3290–3294.CrossRefPubMed
go back to reference Welch, R. B. (1978). Perceptual modification. Adapting to altered sensory environments. New York: Academic Press. Welch, R. B. (1978). Perceptual modification. Adapting to altered sensory environments. New York: Academic Press.
go back to reference Wendker, N., Sack, O. S., & Sutter, C. (2014). Visual target distance, but not visual cursor path length produces shifts in motor behavior. Frontiers in Psychology, 5, 225.CrossRefPubMedPubMedCentral Wendker, N., Sack, O. S., & Sutter, C. (2014). Visual target distance, but not visual cursor path length produces shifts in motor behavior. Frontiers in Psychology, 5, 225.CrossRefPubMedPubMedCentral
go back to reference Wilke, C., Synofzik, M., & Lindner, A. (2013). Sensorimotor recalibration depends on attribution of sensory prediction errors to internal causes. PLoS ONE, 8, e54925.CrossRefPubMedPubMedCentral Wilke, C., Synofzik, M., & Lindner, A. (2013). Sensorimotor recalibration depends on attribution of sensory prediction errors to internal causes. PLoS ONE, 8, e54925.CrossRefPubMedPubMedCentral
go back to reference Zbib, B., Henriques, D. Y. P., & Cressman, E. K. (2016). Proprioceptive recalibration arises slowly compared to reach adaptation. Experimental Brain Research, 234, 2201–2213.CrossRefPubMed Zbib, B., Henriques, D. Y. P., & Cressman, E. K. (2016). Proprioceptive recalibration arises slowly compared to reach adaptation. Experimental Brain Research, 234, 2201–2213.CrossRefPubMed
Metagegevens
Titel
Contrasting effects of adaptation to a visuomotor rotation on explicit and implicit measures of sensory coupling
Auteurs
Miya K. Rand
Herbert Heuer
Publicatiedatum
20-10-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0931-1

Andere artikelen Uitgave 5/2019

Psychological Research 5/2019 Naar de uitgave