Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2014

01-07-2014 | Original Article

Concurrent adaptation to opposite visual distortions: impairment and cue

Auteurs: Lei Wang, Jochen Müsseler

Gepubliceerd in: Psychological Research | Uitgave 4/2014

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The present study compared single and dual adaptation to visuomotor rotations in different cueing conditions. Participants adapted either to a constant rotation or to opposing rotations (dual adaptation) applied in an alternating order. In Experiment 1, visual and corresponding postural cues were provided to indicate different rotation directions. In Experiment 2, either a visual or a postural cue was available. In all cueing conditions, substantial dual adaptation was observed, although it was attenuated in comparison to single adaptation. Analysis of switching costs determined as the performance difference between the last trial before and the first trial after the change of rotation direction suggested substantial advantage of the visual cue compared to the postural cue, which was in line with previous findings demonstrating the dominance of visual sense in movement representation and control.
Voetnoten
1
A further class of abstract instructional cues (Imamizu et al., 2007) will not be discussed here.
 
Literatuur
go back to reference Bock, O., Schneider, S., & Bloomberg, J. (2001). Conditions for interference versus facilitation during sequential sensorimotor adaptation. Experimental Brain Research, 138(3), 359–365.PubMedCrossRef Bock, O., Schneider, S., & Bloomberg, J. (2001). Conditions for interference versus facilitation during sequential sensorimotor adaptation. Experimental Brain Research, 138(3), 359–365.PubMedCrossRef
go back to reference Bock, O., Worringham, C., & Thomas, M. (2005). Concurrent adaptations of left and right arms to opposite visual distortions. Experimental Brain Research, 162(4), 513–519.PubMedCrossRef Bock, O., Worringham, C., & Thomas, M. (2005). Concurrent adaptations of left and right arms to opposite visual distortions. Experimental Brain Research, 162(4), 513–519.PubMedCrossRef
go back to reference Galea, J. M., & Miall, R. C. (2006). Concurrent adaptation to opposing visual displacements during an alternating movement. Experimental Brain Research, 175(4), 676–688.PubMedCentralPubMedCrossRef Galea, J. M., & Miall, R. C. (2006). Concurrent adaptation to opposing visual displacements during an alternating movement. Experimental Brain Research, 175(4), 676–688.PubMedCentralPubMedCrossRef
go back to reference Gandolfo, F., Mussa-Ivaldi, F., & Bizzi, E. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences, 93(9), 3843–3846.CrossRef Gandolfo, F., Mussa-Ivaldi, F., & Bizzi, E. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences, 93(9), 3843–3846.CrossRef
go back to reference Gordon, A. M., Westling, G., Cole, K. J., & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. Journal of Neurophysiology, 69(6), 1789–1796.PubMed Gordon, A. M., Westling, G., Cole, K. J., & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. Journal of Neurophysiology, 69(6), 1789–1796.PubMed
go back to reference Haruno, M., Wolpert, D. M., & Kawato, M. (2001). MOSAIC Model for Sensorimotor Learning and Control. Neural Computation, 13, 2201–2220.PubMedCrossRef Haruno, M., Wolpert, D. M., & Kawato, M. (2001). MOSAIC Model for Sensorimotor Learning and Control. Neural Computation, 13, 2201–2220.PubMedCrossRef
go back to reference Hegele, M., & Heuer, H. (2010). Implicit and explicit components of dual adaptation to visuomotor rotations. Consciousness and Cognition, 19(4), 906–917.PubMedCrossRef Hegele, M., & Heuer, H. (2010). Implicit and explicit components of dual adaptation to visuomotor rotations. Consciousness and Cognition, 19(4), 906–917.PubMedCrossRef
go back to reference Heuer, H., & Hegele, M. (2011). Generalization of implicit and explicit adjustments to visuomotor rotations across the workspace in younger and older adults. Journal of Neurophysiology, 106(4), 2078f Neur. Heuer, H., & Hegele, M. (2011). Generalization of implicit and explicit adjustments to visuomotor rotations across the workspace in younger and older adults. Journal of Neurophysiology, 106(4), 2078f Neur.
go back to reference Imamizu, H., Kuroda, T., Yoshioka, T., & Kawato, M. (2004). Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. The Journal of Neuroscience, 24(5), 1173–1181.PubMedCrossRef Imamizu, H., Kuroda, T., Yoshioka, T., & Kawato, M. (2004). Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. The Journal of Neuroscience, 24(5), 1173–1181.PubMedCrossRef
go back to reference Imamizu, H., Sugimoto, N., Osu, R., Tsutsui, K., Sugiyama, K., Wada, Y., et al. (2007). Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research, 181(3), 395–408.PubMedCrossRef Imamizu, H., Sugimoto, N., Osu, R., Tsutsui, K., Sugiyama, K., Wada, Y., et al. (2007). Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research, 181(3), 395–408.PubMedCrossRef
go back to reference Kagerer, F. A., Contreras-Vidal, J., & Stelmach, G. E. (1997). Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 115(3), 557–561.PubMedCrossRef Kagerer, F. A., Contreras-Vidal, J., & Stelmach, G. E. (1997). Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 115(3), 557–561.PubMedCrossRef
go back to reference Karniel, A., & Mussa-Ivaldi, F. A. (2002). Does the motor control system use multiple models and context switching to cope with a variable environment? Experimental Brain Research, 143(4), 520–524.PubMedCrossRef Karniel, A., & Mussa-Ivaldi, F. A. (2002). Does the motor control system use multiple models and context switching to cope with a variable environment? Experimental Brain Research, 143(4), 520–524.PubMedCrossRef
go back to reference Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in psychotoolbox-3? Perception, 36 ECVP Abstract Supplement. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in psychotoolbox-3? Perception, 36 ECVP Abstract Supplement.
go back to reference Krakauer, J. W. (2009). Motor learning and consolidation: the case of visuomotor rotation. Progress in Motor Control, 629, 405–421.CrossRef Krakauer, J. W. (2009). Motor learning and consolidation: the case of visuomotor rotation. Progress in Motor Control, 629, 405–421.CrossRef
go back to reference Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to Visuomotor Transformations: Consolidation, Interference, and Forgetting. The Journal of Neuroscience, 25(2), 473–478.PubMedCrossRef Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to Visuomotor Transformations: Consolidation, Interference, and Forgetting. The Journal of Neuroscience, 25(2), 473–478.PubMedCrossRef
go back to reference Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2, 1026–1031.PubMedCrossRef Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2, 1026–1031.PubMedCrossRef
go back to reference Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. The Journal of Neuroscience, 20(23), 8916–8924.PubMed Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. The Journal of Neuroscience, 20(23), 8916–8924.PubMed
go back to reference Krouchev, N. I., & Kalaska, J. F. (2002). Context-dependent anticipation of different task dynamics: Rapid recall of appropriate motor skills using visual cues. Journal of Neurophysiology, 89(2), 1165–1175.CrossRef Krouchev, N. I., & Kalaska, J. F. (2002). Context-dependent anticipation of different task dynamics: Rapid recall of appropriate motor skills using visual cues. Journal of Neurophysiology, 89(2), 1165–1175.CrossRef
go back to reference Ladwig, S., Sutter, C., & Müsseler, J. (2012). Crosstalk between proximal and distal action effects during tool use. Zeitschrift für Psychologie/Journal of Psychology, 220, 10–15.CrossRef Ladwig, S., Sutter, C., & Müsseler, J. (2012). Crosstalk between proximal and distal action effects during tool use. Zeitschrift für Psychologie/Journal of Psychology, 220, 10–15.CrossRef
go back to reference Larssen, B. C., Ong, N. T., & Hodges, N. J. (2012). Watch and Learn: Seeing is Better than Doing when Acquiring Consecutive Motor Tasks. PLoS ONE, 7(6), e38938.PubMedCentralPubMedCrossRef Larssen, B. C., Ong, N. T., & Hodges, N. J. (2012). Watch and Learn: Seeing is Better than Doing when Acquiring Consecutive Motor Tasks. PLoS ONE, 7(6), e38938.PubMedCentralPubMedCrossRef
go back to reference Lee, J. Y., & Schweighofer, N. (2009). Dual adaptation supports a parallel architecture of motor memory. The Journal of Neuroscience, 29(33), 10396–10404.PubMedCentralPubMedCrossRef Lee, J. Y., & Schweighofer, N. (2009). Dual adaptation supports a parallel architecture of motor memory. The Journal of Neuroscience, 29(33), 10396–10404.PubMedCentralPubMedCrossRef
go back to reference Massen, C. (2012). Die Planung und kognitive Repräsentation von Handlungen mit Werkzeugen [Planning and cognitive representation of actions with tools]. Psychologische Rundschau, 63(2), 79–91.CrossRef Massen, C. (2012). Die Planung und kognitive Repräsentation von Handlungen mit Werkzeugen [Planning and cognitive representation of actions with tools]. Psychologische Rundschau, 63(2), 79–91.CrossRef
go back to reference Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414(6859), 69–72.PubMedCrossRef Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414(6859), 69–72.PubMedCrossRef
go back to reference Miall, R. C., Jenkinson, N., & Kulkarni, K. (2004). Adaptation to rotated visual feedback: a re-examination of motor interference. Experimental Brain Research, 154(2), 201–210.PubMedCrossRef Miall, R. C., Jenkinson, N., & Kulkarni, K. (2004). Adaptation to rotated visual feedback: a re-examination of motor interference. Experimental Brain Research, 154(2), 201–210.PubMedCrossRef
go back to reference Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Network, 9(8), 1265–1279.CrossRef Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Network, 9(8), 1265–1279.CrossRef
go back to reference Müsseler, J., & Sutter, C. (2009). Perceiving one’s own movements when using a tool. Consciousness and Cognition, 18(2), 359–365.PubMedCrossRef Müsseler, J., & Sutter, C. (2009). Perceiving one’s own movements when using a tool. Consciousness and Cognition, 18(2), 359–365.PubMedCrossRef
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edingburgh inventory. Neuropsychologia, 9, 97–113. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edingburgh inventory. Neuropsychologia, 9, 97–113.
go back to reference Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 473–442. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 473–442.
go back to reference Rand, M. K., Wang, L., & Müsseler, J. (2013). Vision and proprioception in action monitoring by young and older adults. Neurobiology of Aging, 34(7), 1864–1872.PubMedCrossRef Rand, M. K., Wang, L., & Müsseler, J. (2013). Vision and proprioception in action monitoring by young and older adults. Neurobiology of Aging, 34(7), 1864–1872.PubMedCrossRef
go back to reference Rao, A., & Shadmehr, R. (2001). Contextual cues facilitate learning of multiple models of arm dynamics. Society for Neuroscience Abstracts, 302(4). Rao, A., & Shadmehr, R. (2001). Contextual cues facilitate learning of multiple models of arm dynamics. Society for Neuroscience Abstracts, 302(4).
go back to reference Shadmehr, R., & Holcomb, H. H. (1999). Inhibitory control of competing motor memories. Experimental Brain Research, 126(2), 235–251.PubMedCrossRef Shadmehr, R., & Holcomb, H. H. (1999). Inhibitory control of competing motor memories. Experimental Brain Research, 126(2), 235–251.PubMedCrossRef
go back to reference Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience, 14(5), 3208–3224.PubMed Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience, 14(5), 3208–3224.PubMed
go back to reference Sutter, C., Sülzenbrück, S., Rieger, M., & Müsseler, J. (2013). Limitations of distal effect anticipation when using tools. New Ideas in Psychology. Sutter, C., Sülzenbrück, S., Rieger, M., & Müsseler, J. (2013). Limitations of distal effect anticipation when using tools. New Ideas in Psychology.
go back to reference Tong, C., Wolpert, D. M., & Flanagan, J. R. (2002). Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. The Journal of Neuroscience, 22(3), 1108.PubMed Tong, C., Wolpert, D. M., & Flanagan, J. R. (2002). Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. The Journal of Neuroscience, 22(3), 1108.PubMed
go back to reference Wang, L., & Müsseler, J. (2012). Generalization of visuomotor adaptation depends on the spatial characteristic of visual workspace. Experimental Brain Research, 223(3), 253–365.CrossRef Wang, L., & Müsseler, J. (2012). Generalization of visuomotor adaptation depends on the spatial characteristic of visual workspace. Experimental Brain Research, 223(3), 253–365.CrossRef
go back to reference Wang, L, Rand, M. K., & Müsseler, J. (2013). Spatial realignment in sensorimotor adaptation: Taking the efficiency into account. Journal of Experimental Psychology: Human Perception and Performance. Online first. Wang, L, Rand, M. K., & Müsseler, J. (2013). Spatial realignment in sensorimotor adaptation: Taking the efficiency into account. Journal of Experimental Psychology: Human Perception and Performance. Online first.
go back to reference Wigmore, V., Tong, C., & Flanagan, J. R. (2002). Visuomotor rotations of varying size and direction compete for a single internal model in a motor working memory. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 447.PubMed Wigmore, V., Tong, C., & Flanagan, J. R. (2002). Visuomotor rotations of varying size and direction compete for a single internal model in a motor working memory. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 447.PubMed
go back to reference Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.PubMedCrossRef Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.PubMedCrossRef
go back to reference Woolley, D. G., Tresilian, J. R., Carson, R. G., & Riek, S. (2007). Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace. Experimental Brain Research, 179(2), 155–165.PubMedCrossRef Woolley, D. G., Tresilian, J. R., Carson, R. G., & Riek, S. (2007). Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace. Experimental Brain Research, 179(2), 155–165.PubMedCrossRef
Metagegevens
Titel
Concurrent adaptation to opposite visual distortions: impairment and cue
Auteurs
Lei Wang
Jochen Müsseler
Publicatiedatum
01-07-2014
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 4/2014
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-013-0500-1

Andere artikelen Uitgave 4/2014

Psychological Research 4/2014 Naar de uitgave