Skip to main content
Top
Gepubliceerd in: Neuropraxis 6/2015

04-11-2015 | Artikel

Computationele psychiatrie: een toekomst voor wiskundige modellen in de classificatie en behandeling van psychopathologie?

Auteurs: Dr. Zsuzsika Sjoerds, Dr. Hanneke E.M. den Ouden

Gepubliceerd in: Neuropraxis | Uitgave 6/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Het huidige systeem voor psychiatrische diagnostiek en nosologie is voornamelijk gebaseerd op extern waarneembare symptomen en een categorische classificatie. Dit leidt tot heterogeniteit en comorbiditeit tussen diagnosen. Om classificatie te verbeteren en individuele behandeling te bevorderen, is er behoefte aan een meer dimensionale en kwantitatieve benadering, waarmee onderliggende (niet direct waarneembare) processen en mechanismen worden gedefinieerd. Een dergelijke benadering zal leiden tot toepasbare diagnostische tests die zich richten op pathofysiologische mechanismen die ten grondslag liggen aan verstoorde observeerbare cognitieve en emotionele processen en de daaruit voortkomende psychopathologie. Computationele psychiatrie biedt een handvat tot een dergelijke mechanistische benadering. Door middel van non-lineaire wiskundige modellen wordt informatie geïntegreerd over latente processen die ten grondslag liggen aan (verstoord) gedrag, simultaan gemeten breinactiviteit, en zelfs effecten van interventies, zoals hersenstimulatie en farmacologie. De hoop is dat deze benadering zal leiden tot een beter begrip van psychiatrische stoornissen op het niveau van (latente) cognitieve processen en de onderliggende neurobiologie en, daaruit volgend, een verbetering van diagnose en behandeling.
In dit artikel introduceren wij eerst de rationale en werkwijze van de computationele psychiatrie, om vervolgens de stappen te bespreken die naar onze mening genomen moeten worden om een succesvolle bijdrage te leveren aan de psychiatrie en gerelateerde specialismen.
Literatuur
2.
go back to reference Nutt D, Goodwin G. ECNP Summit on the future of CNS drug research in Europe 2011: report prepared for ECNP by David Nutt and Guy Goodwin. Eur Neuropsychopharmacol. 2011;21:495–9.CrossRefPubMed Nutt D, Goodwin G. ECNP Summit on the future of CNS drug research in Europe 2011: report prepared for ECNP by David Nutt and Guy Goodwin. Eur Neuropsychopharmacol. 2011;21:495–9.CrossRefPubMed
4.
go back to reference Sahakian BJ, Malloch G, Kennard C. A UK strategy for mental health and wellbeing. Lancet. 2010; 375:1854–55.CrossRefPubMed Sahakian BJ, Malloch G, Kennard C. A UK strategy for mental health and wellbeing. Lancet. 2010; 375:1854–55.CrossRefPubMed
5.
go back to reference Nutt DJ, Attridge J. CNS drug development in Europe–past progress and future challenges. Neurobiol Dis. 2014;61:6–20.CrossRefPubMed Nutt DJ, Attridge J. CNS drug development in Europe–past progress and future challenges. Neurobiol Dis. 2014;61:6–20.CrossRefPubMed
6.
go back to reference Sutton RS, Barto AG. Reinforcement learning: an introduction Cambridge. Cambridge: MIT Press; 1998. Sutton RS, Barto AG. Reinforcement learning: an introduction Cambridge. Cambridge: MIT Press; 1998.
8.
go back to reference Adams RA, Huys QJM, Roiser JP. Computational psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2015. jnnp-2015-310737. doi:10.1136/jnnp-2015-310737. Adams RA, Huys QJM, Roiser JP. Computational psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2015. jnnp-2015-310737. doi:10.1136/jnnp-2015-310737.
9.
go back to reference Huys QJM. Computational Psychiatry. In: Jaeger D, Jung R, redactie. Encyclopedia of computational neuroscience New York. New York: Springer; 2013. pp 1–10.CrossRef Huys QJM. Computational Psychiatry. In: Jaeger D, Jung R, redactie. Encyclopedia of computational neuroscience New York. New York: Springer; 2013. pp 1–10.CrossRef
11.
go back to reference Huys QJM, Moutoussis M, Williams J. Are computational models of any use to psychiatry? Neural Netw. 2011;24:544–51.CrossRefPubMed Huys QJM, Moutoussis M, Williams J. Are computational models of any use to psychiatry? Neural Netw. 2011;24:544–51.CrossRefPubMed
13.
go back to reference Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry. 2014;1:148–58.CrossRefPubMed Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry. 2014;1:148–58.CrossRefPubMed
14.
go back to reference Stephan KE, Mathys C. Computational approaches to psychiatry. Curr Opin Neurobiol. 2014;25:85–92.CrossRefPubMed Stephan KE, Mathys C. Computational approaches to psychiatry. Curr Opin Neurobiol. 2014;25:85–92.CrossRefPubMed
16.
go back to reference Huys QJM, Guitart-Masip M, Dolan RJ, Dayan P. Decision-theoretic psychiatry. Clin Psychol Sci. 2015;3:400–21.CrossRef Huys QJM, Guitart-Masip M, Dolan RJ, Dayan P. Decision-theoretic psychiatry. Clin Psychol Sci. 2015;3:400–21.CrossRef
17.
go back to reference Wiecki TV, Poland J, Frank MJ. Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin Psychol Sci. 2015;3:378–99.CrossRef Wiecki TV, Poland J, Frank MJ. Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin Psychol Sci. 2015;3:378–99.CrossRef
18.
go back to reference Bystritsky A, Nierenberg AA, Feusner JD, Rabinovich M. Computational non-linear dynamical psychiatry: a new methodological paradigm for diagnosis and course of illness. J Psychiatr Res. 2012;46:428–35.CrossRefPubMed Bystritsky A, Nierenberg AA, Feusner JD, Rabinovich M. Computational non-linear dynamical psychiatry: a new methodological paradigm for diagnosis and course of illness. J Psychiatr Res. 2012;46:428–35.CrossRefPubMed
22.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders: Dsm-5., 5th edn. Arlington: American Psychiatric Publishing; 2013. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: Dsm-5., 5th edn. Arlington: American Psychiatric Publishing; 2013.
23.
go back to reference World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: WHO; 1992. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: WHO; 1992.
24.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fourth edition. Washington, DC: American Psychiatric Publishing; 2001. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fourth edition. Washington, DC: American Psychiatric Publishing; 2001.
25.
go back to reference Charney D, Barlow DH, Botteron K, Cohen JD, Goldman D, Gur R, et al. Neuroscience research agenda to guide development of a pathophysiologically based classification system. In: Kupfer DJ, First M, Regier DA, redactie. A Res agenda DSM-V (Vol. 20) Washington, DC: American Psychiatric Association; 2002. pp. 31–83. Charney D, Barlow DH, Botteron K, Cohen JD, Goldman D, Gur R, et al. Neuroscience research agenda to guide development of a pathophysiologically based classification system. In: Kupfer DJ, First M, Regier DA, redactie. A Res agenda DSM-V (Vol. 20) Washington, DC: American Psychiatric Association; 2002. pp. 31–83.
26.
go back to reference Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.CrossRefPubMed Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.CrossRefPubMed
27.
go back to reference Forstmann BU, Wagemakers EJ, Eichele T, Brown S, Serences JT. Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract? Trends Cogn Sci. 2011;6:272–9.CrossRef Forstmann BU, Wagemakers EJ, Eichele T, Brown S, Serences JT. Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract? Trends Cogn Sci. 2011;6:272–9.CrossRef
28.
go back to reference Den Ouden HEM, Kok P, Lange FP de. How prediction errors shape perception, attention, and motivation. Front Psychol. 2012;3:1–12.CrossRef Den Ouden HEM, Kok P, Lange FP de. How prediction errors shape perception, attention, and motivation. Front Psychol. 2012;3:1–12.CrossRef
29.
go back to reference Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59:929–39.CrossRefPubMed Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59:929–39.CrossRefPubMed
30.
go back to reference Den Ouden HEM, Daw ND, Fernandez G, Elshout JA, Rijpkema M, Hoogman M, et al. Dissociable effects of dopamine and serotonin on reversal learning. Neuron. 2013;80:1090–100.CrossRefPubMed Den Ouden HEM, Daw ND, Fernandez G, Elshout JA, Rijpkema M, Hoogman M, et al. Dissociable effects of dopamine and serotonin on reversal learning. Neuron. 2013;80:1090–100.CrossRefPubMed
31.
go back to reference Maia TV. Reinforcement learning, conditioning, and the brain: successes and challenges. Cogn Affect Behav Neurosci. 2009;9:343–64.CrossRefPubMed Maia TV. Reinforcement learning, conditioning, and the brain: successes and challenges. Cogn Affect Behav Neurosci. 2009;9:343–64.CrossRefPubMed
33.
go back to reference Thorndike EL. Animal intelligence: experimental studies. New York: Macmillian; 1911.CrossRef Thorndike EL. Animal intelligence: experimental studies. New York: Macmillian; 1911.CrossRef
34.
go back to reference Thorndike EL. Animal intelligence: an experimental study of the associative processes in animals. Psychol Rev Monogr Suppl. 1898;2:1–109. Thorndike EL. Animal intelligence: an experimental study of the associative processes in animals. Psychol Rev Monogr Suppl. 1898;2:1–109.
35.
go back to reference Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8:1704–11.CrossRefPubMed Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8:1704–11.CrossRefPubMed
36.
go back to reference Huys QJM, Cruickshank A, Seriès P. Reward-based learning, model-based and model-free. In: Jaeger D, Jung R, redactie. Encycl Comput Neurosci. New York: Springer; 2014. pp. 1–10. Huys QJM, Cruickshank A, Seriès P. Reward-based learning, model-based and model-free. In: Jaeger D, Jung R, redactie. Encycl Comput Neurosci. New York: Springer; 2014. pp. 1–10.
37.
go back to reference Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on humans’ choices and striatal prediction errors. Neuron. 2011;69:1204–15.PubMedCentralCrossRefPubMed Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on humans’ choices and striatal prediction errors. Neuron. 2011;69:1204–15.PubMedCentralCrossRefPubMed
39.
go back to reference De Wit S, Corlett PR, Aitken MRF, Dickinson A, Fletcher PC. Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J Neurosci. 2009;29:11330–8.PubMedCentralCrossRefPubMed De Wit S, Corlett PR, Aitken MRF, Dickinson A, Fletcher PC. Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J Neurosci. 2009;29:11330–8.PubMedCentralCrossRefPubMed
40.
go back to reference Tricomi E, Balleine BW, O’Doherty JP. A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci. 2009;29:2225–32.PubMedCentralCrossRefPubMed Tricomi E, Balleine BW, O’Doherty JP. A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci. 2009;29:2225–32.PubMedCentralCrossRefPubMed
41.
42.
go back to reference Radenbach C, Reiter AMF, Engert V, Sjoerds Z, Villringer A, Heinze H-J, Schlagenhauf F. The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology. 2015;53:268–80.CrossRefPubMed Radenbach C, Reiter AMF, Engert V, Sjoerds Z, Villringer A, Heinze H-J, Schlagenhauf F. The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology. 2015;53:268–80.CrossRefPubMed
43.
go back to reference Maier SU, Makwana AB, Hare TA. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron. 2015;87:621–31.CrossRefPubMed Maier SU, Makwana AB, Hare TA. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron. 2015;87:621–31.CrossRefPubMed
44.
go back to reference Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.CrossRefPubMed Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.CrossRefPubMed
45.
go back to reference Sjoerds Z, Wit S de, Van Den Brink W, Robbins TW, Beekman ATF, Penninx BWJH, Veltman DJ. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry. 2013;3:e337.PubMedCentralCrossRefPubMed Sjoerds Z, Wit S de, Van Den Brink W, Robbins TW, Beekman ATF, Penninx BWJH, Veltman DJ. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry. 2013;3:e337.PubMedCentralCrossRefPubMed
47.
go back to reference Barker JM, Taylor JR. Habitual alcohol seeking: modeling the transition from casual drinking to addiction. Neurosci Biobehav Rev. 2014;47:281–94.CrossRefPubMed Barker JM, Taylor JR. Habitual alcohol seeking: modeling the transition from casual drinking to addiction. Neurosci Biobehav Rev. 2014;47:281–94.CrossRefPubMed
48.
go back to reference Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology. 2014;70:122–31.CrossRefPubMed Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology. 2014;70:122–31.CrossRefPubMed
49.
go back to reference Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2014;20:345–52.PubMedCentralCrossRefPubMed Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2014;20:345–52.PubMedCentralCrossRefPubMed
50.
go back to reference Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev. 2015;55:247–67.CrossRefPubMed Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev. 2015;55:247–67.CrossRefPubMed
51.
go back to reference Huys QJM, Daw ND, Dayan P. Depression: a decision-theoretic analysis. Annu Rev Neurosci. 2015;38:1–23.CrossRefPubMed Huys QJM, Daw ND, Dayan P. Depression: a decision-theoretic analysis. Annu Rev Neurosci. 2015;38:1–23.CrossRefPubMed
52.
go back to reference Schlagenhauf F, Huys QJM, Deserno L, Rapp MA, Beck A, Heinze H-J, et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage. 2014;89:171–80.PubMedCentralCrossRefPubMed Schlagenhauf F, Huys QJM, Deserno L, Rapp MA, Beck A, Heinze H-J, et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage. 2014;89:171–80.PubMedCentralCrossRefPubMed
53.
go back to reference Gruner P, Anticevic A, Lee D, Pittenger C. Arbitration between action strategies in obsessive-compulsive disorder. Neuroscientist. 2015. doi:10.1177/1073858414568317. Gruner P, Anticevic A, Lee D, Pittenger C. Arbitration between action strategies in obsessive-compulsive disorder. Neuroscientist. 2015. doi:10.1177/1073858414568317.
54.
go back to reference Lee SW, Shimojo S, O’Doherty JP, Doherty JPO. Neural computations underlying arbitration between model-based and model-free learning. Neuron. 2014;81:687–99.PubMedCentralCrossRefPubMed Lee SW, Shimojo S, O’Doherty JP, Doherty JPO. Neural computations underlying arbitration between model-based and model-free learning. Neuron. 2014;81:687–99.PubMedCentralCrossRefPubMed
55.
go back to reference Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51.CrossRefPubMed Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51.CrossRefPubMed
56.
go back to reference Gläscher J, Daw ND, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.PubMedCentralCrossRefPubMed Gläscher J, Daw ND, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.PubMedCentralCrossRefPubMed
58.
go back to reference Geurts DEM, Huys QJM, Ouden HEM den, Cools R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci. 2013;33:18932–9.CrossRefPubMed Geurts DEM, Huys QJM, Ouden HEM den, Cools R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci. 2013;33:18932–9.CrossRefPubMed
59.
60.
go back to reference Kahnt T, Park SQ, Cohen MX, Beck A, Heinz A, Wrase J. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions. J Cogn Neurosci. 2009;21:1332–45.CrossRefPubMed Kahnt T, Park SQ, Cohen MX, Beck A, Heinz A, Wrase J. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions. J Cogn Neurosci. 2009;21:1332–45.CrossRefPubMed
61.
go back to reference Deserno L, Huys QJM, Boehme R, Buchert R, Heinze HJ, Grace AA, Dolan RJ, Heinz A, Schlagenhauf F. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci USA. 2015;5:1595–1600.CrossRef Deserno L, Huys QJM, Boehme R, Buchert R, Heinze HJ, Grace AA, Dolan RJ, Heinz A, Schlagenhauf F. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci USA. 2015;5:1595–1600.CrossRef
62.
go back to reference Schlagenhauf F, Rapp MA, Huys QJM, Beck A, Wüstenberg T, Deserno L, et al. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum Brain Mapp. 2013;34:1490–9.PubMedCentralCrossRefPubMed Schlagenhauf F, Rapp MA, Huys QJM, Beck A, Wüstenberg T, Deserno L, et al. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum Brain Mapp. 2013;34:1490–9.PubMedCentralCrossRefPubMed
63.
go back to reference Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi AH, et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front Psychol. 2014;5:1450.PubMedCentralCrossRefPubMed Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi AH, et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front Psychol. 2014;5:1450.PubMedCentralCrossRefPubMed
64.
go back to reference Deserno L, Wilbertz T, Reiter A, Horstmann A, Villringer A, Heinze H, Schlagenhauf F. Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity. Transl Psychiatry. 2015. (In Press). Deserno L, Wilbertz T, Reiter A, Horstmann A, Villringer A, Heinze H, Schlagenhauf F. Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity. Transl Psychiatry. 2015. (In Press).
65.
go back to reference Otto AR, Raio CM, Chiang A, Phelps EA, Daw ND. Working-memory capacity protects model-based learning from stress. Proc Natl Acad Sci U S A. 2013;110:20941–6.PubMedCentralCrossRefPubMed Otto AR, Raio CM, Chiang A, Phelps EA, Daw ND. Working-memory capacity protects model-based learning from stress. Proc Natl Acad Sci U S A. 2013;110:20941–6.PubMedCentralCrossRefPubMed
66.
go back to reference Frank MJ. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci. 2005;17:51–72.CrossRefPubMed Frank MJ. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci. 2005;17:51–72.CrossRefPubMed
67.
go back to reference Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM, et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:631–8.PubMedCentralCrossRefPubMed Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM, et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:631–8.PubMedCentralCrossRefPubMed
68.
go back to reference Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008;9:696–709.CrossRefPubMed Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008;9:696–709.CrossRefPubMed
70.
go back to reference Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014;4:98–111.PubMedCentralCrossRefPubMed Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014;4:98–111.PubMedCentralCrossRefPubMed
71.
go back to reference Robbins TW, Gillan CM, Smith DG, Wit S de, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16:81–91.CrossRefPubMed Robbins TW, Gillan CM, Smith DG, Wit S de, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16:81–91.CrossRefPubMed
72.
go back to reference Daw ND. Trial-by-trial data analysis using computational models. In: Delgado MR, Phelps EA, Robbins TW. Decision making, affect and learning, attention and performance XXIII. New York: Oxford University Press; 2011. pp. 3–38.CrossRef Daw ND. Trial-by-trial data analysis using computational models. In: Delgado MR, Phelps EA, Robbins TW. Decision making, affect and learning, attention and performance XXIII. New York: Oxford University Press; 2011. pp. 3–38.CrossRef
73.
74.
go back to reference Kay SR, Opler LA, Lindenmayer JP. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry. 1989;7:59–67. Kay SR, Opler LA, Lindenmayer JP. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry. 1989;7:59–67.
75.
go back to reference Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.CrossRefPubMed Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.CrossRefPubMed
Metagegevens
Titel
Computationele psychiatrie: een toekomst voor wiskundige modellen in de classificatie en behandeling van psychopathologie?
Auteurs
Dr. Zsuzsika Sjoerds
Dr. Hanneke E.M. den Ouden
Publicatiedatum
04-11-2015
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Neuropraxis / Uitgave 6/2015
Print ISSN: 1387-5817
Elektronisch ISSN: 1876-5785
DOI
https://doi.org/10.1007/s12474-015-0102-3

Andere artikelen Uitgave 6/2015

Neuropraxis 6/2015 Naar de uitgave

Woorden vooraf

Woorden vooraf