Skip to main content
Top

2017 | OriginalPaper | Hoofdstuk

10. Complicaties en andere gevolgen van mechanische beademing

Auteur : Hans ter Haar

Gepubliceerd in: Mechanische beademing op de intensive care

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

In combinatie met de onderliggende ziekte kan mechanische beademing het functioneren van organen en processen op diverse manieren beïnvloeden. Circulatie en perfusie van organen en weefsels worden beïnvloed door een verandering van het hartminuutvolume, door veneuze stuwing, afgenomen lymfedrainage en de vasoactieve eigenschappen van kooldioxide en zuurstof. Bovendien treedt vochtretentie op door het effect van mechanische beademing op diverse hormonale regelsystemen en kunnen inflammatoire mediatoren het immuunsysteem zodanig activeren dat dit tot schade aan longen en andere organen leidt. Het gebruik van zuurstof kent bijwerkingen, evenals de aanwezigheid van een interface en de medicatie die gebruikt wordt om mechanische beademing te faciliteren; ten slotte kan mechanische beademing de slaapkwaliteit beïnvloeden.
Literatuur
1.
go back to reference Luce JM. The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA. 1984;252:807–11.PubMedCrossRef Luce JM. The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA. 1984;252:807–11.PubMedCrossRef
3.
go back to reference Cherpanath TGV, Lagrand WK, Schultz MJ, Groeneveld ABJ. Cardiopulmonary interactions during mechanical ventilation in critically ill patients. Neth Heart J. 2013;21:166–72.PubMedPubMedCentralCrossRef Cherpanath TGV, Lagrand WK, Schultz MJ, Groeneveld ABJ. Cardiopulmonary interactions during mechanical ventilation in critically ill patients. Neth Heart J. 2013;21:166–72.PubMedPubMedCentralCrossRef
4.
go back to reference Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMed Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMed
5.
go back to reference Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.PubMedCrossRef Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.PubMedCrossRef
6.
go back to reference Calvin JE, Quinn B. Right ventricular pressure overload during acute lung injury: cardiac mechanics and the pathophysiology of right ventricular systolic dysfunction. J Crit Care. 1989;4:251–65.CrossRef Calvin JE, Quinn B. Right ventricular pressure overload during acute lung injury: cardiac mechanics and the pathophysiology of right ventricular systolic dysfunction. J Crit Care. 1989;4:251–65.CrossRef
7.
go back to reference Jacob R, Dierberger B, Kissling G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur. Heart J. 1992;13(suppl E):7–14.PubMedCrossRef Jacob R, Dierberger B, Kissling G. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions. Eur. Heart J. 1992;13(suppl E):7–14.PubMedCrossRef
8.
go back to reference Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: Importance of the volume status. Critical Care Med. 2010;38(3):802–7.CrossRef Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: Importance of the volume status. Critical Care Med. 2010;38(3):802–7.CrossRef
9.
go back to reference Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.PubMedCrossRef Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.PubMedCrossRef
10.
go back to reference Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive endexpiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29:1154–8.PubMedCrossRef Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive endexpiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29:1154–8.PubMedCrossRef
11.
go back to reference Ranieri VM, Giuliani R, Mascia L, et al. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 1996;81:426–36.PubMed Ranieri VM, Giuliani R, Mascia L, et al. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 1996;81:426–36.PubMed
12.
go back to reference Mitaka C, Nagura T, Sakanishi N, et al. Two-dimensional echocardiographic evaluation of inferior vena cava, right ventricle, and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med. 1989;17:205–10.PubMedCrossRef Mitaka C, Nagura T, Sakanishi N, et al. Two-dimensional echocardiographic evaluation of inferior vena cava, right ventricle, and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med. 1989;17:205–10.PubMedCrossRef
13.
go back to reference Rudiger A, Singer M. Mechanism of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.PubMedCrossRef Rudiger A, Singer M. Mechanism of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.PubMedCrossRef
14.
go back to reference Rohn DA, Stewart RH, Elk JR, et al. Renal lymphatic function following venous pressure elevation. Lymphology. 1996;29:67–75.PubMed Rohn DA, Stewart RH, Elk JR, et al. Renal lymphatic function following venous pressure elevation. Lymphology. 1996;29:67–75.PubMed
15.
go back to reference Moriondo A, Mukenge S, Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289:H263–9.PubMedCrossRef Moriondo A, Mukenge S, Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289:H263–9.PubMedCrossRef
16.
go back to reference Szabo G, Magyar Z. Effect of increased systemic venous pressure on lymph pressure and flow. Am J Physiol. 1967;212:1469–74.PubMed Szabo G, Magyar Z. Effect of increased systemic venous pressure on lymph pressure and flow. Am J Physiol. 1967;212:1469–74.PubMed
17.
go back to reference Frostell C, Blomqvist H, Hedenstierna G, et al. Thoracic and abdominal lymph drainage in relation to mechanical ventilation and PEEP. Acta Anaesthesiol Scand. 1987;31:405–12.PubMedCrossRef Frostell C, Blomqvist H, Hedenstierna G, et al. Thoracic and abdominal lymph drainage in relation to mechanical ventilation and PEEP. Acta Anaesthesiol Scand. 1987;31:405–12.PubMedCrossRef
18.
go back to reference Cui Y, Urschel JD, Petrelli NJ. The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thorac Cardiovasc Surg. 2001;49:35–40.PubMedCrossRef Cui Y, Urschel JD, Petrelli NJ. The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thorac Cardiovasc Surg. 2001;49:35–40.PubMedCrossRef
19.
go back to reference Malbrain ML, Pelosi P, De laet I, et al. Lymphatic drainage between thorax and abdomen: please take good care of this well-performing machinery… Acta Clin Belg Suppl. 2007;1:152–61. Malbrain ML, Pelosi P, De laet I, et al. Lymphatic drainage between thorax and abdomen: please take good care of this well-performing machinery… Acta Clin Belg Suppl. 2007;1:152–61.
20.
go back to reference Satta A, Contu B, Branca GF, et al. Importance of liver interstitial pressure on sodium retention. Nephron. 1988;49:190–6.PubMedCrossRef Satta A, Contu B, Branca GF, et al. Importance of liver interstitial pressure on sodium retention. Nephron. 1988;49:190–6.PubMedCrossRef
21.
go back to reference Shear W, Rosner MH. Acute kidney dysfunction secondary to the abdominal compartment syndrome. J Nephrol. 2006;19:556–65.PubMed Shear W, Rosner MH. Acute kidney dysfunction secondary to the abdominal compartment syndrome. J Nephrol. 2006;19:556–65.PubMed
22.
go back to reference Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol. 1989;67(5):2101–6.PubMed Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol. 1989;67(5):2101–6.PubMed
23.
go back to reference Mekontso-Dessap AM, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.PubMedPubMedCentralCrossRef Mekontso-Dessap AM, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.PubMedPubMedCentralCrossRef
24.
go back to reference Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.PubMedCrossRef Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.PubMedCrossRef
25.
go back to reference Lhéritier G, Legras A, Caille A, et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med. 2013;39(10):1734–42.PubMedCrossRef Lhéritier G, Legras A, Caille A, et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med. 2013;39(10):1734–42.PubMedCrossRef
26.
go back to reference Burnum JF, Hickam JB, McIntosh HD. The effect of hypocapnie on arterial blood pressure. Circulation. 1954;9:89–95.PubMedCrossRef Burnum JF, Hickam JB, McIntosh HD. The effect of hypocapnie on arterial blood pressure. Circulation. 1954;9:89–95.PubMedCrossRef
27.
go back to reference McNulty PH, King N, Scott S, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Heart Circ Physiol. 2005;288(3):H1057–62.CrossRef McNulty PH, King N, Scott S, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Heart Circ Physiol. 2005;288(3):H1057–62.CrossRef
28.
go back to reference Annat G, Viale JP, Bui Xuan B, et al. Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology. 1983;58:136–41.PubMedCrossRef Annat G, Viale JP, Bui Xuan B, et al. Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology. 1983;58:136–41.PubMedCrossRef
29.
go back to reference Kilburn KH, Dowell AR. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971;127(4):754–62.PubMedCrossRef Kilburn KH, Dowell AR. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971;127(4):754–62.PubMedCrossRef
31.
go back to reference Brezis M, Rosen S. Hypoxia of the renal medulla: its implications for disease. N Engl J Med. 1995;332:647–55.PubMedCrossRef Brezis M, Rosen S. Hypoxia of the renal medulla: its implications for disease. N Engl J Med. 1995;332:647–55.PubMedCrossRef
32.
go back to reference Brienza N, Revelly JP, Ayuse T, Robotham JL. Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med. 1995;152:504–10.PubMedCrossRef Brienza N, Revelly JP, Ayuse T, Robotham JL. Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med. 1995;152:504–10.PubMedCrossRef
33.
go back to reference Winso O, Biber B, Gustavsson B, et al. Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med. 1986;12:80–5.PubMedCrossRef Winso O, Biber B, Gustavsson B, et al. Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med. 1986;12:80–5.PubMedCrossRef
34.
go back to reference Mutlu GM, Mutlu EA, Factor P. GI complications in patients receiving mechanical ventilation. Chest. 2001;119:1222–41.PubMedCrossRef Mutlu GM, Mutlu EA, Factor P. GI complications in patients receiving mechanical ventilation. Chest. 2001;119:1222–41.PubMedCrossRef
35.
go back to reference Kiefer P, Nunes S, Kosonen P, Takala J. Effect of an acute increase in Pco 2 on splanchnic perfusion and metabolism. Intensive Care Med. 2001;27:775–8.PubMedCrossRef Kiefer P, Nunes S, Kosonen P, Takala J. Effect of an acute increase in Pco 2 on splanchnic perfusion and metabolism. Intensive Care Med. 2001;27:775–8.PubMedCrossRef
36.
go back to reference Welsh DA, Summer WR, deBloisblanc B, et al. Hemodynamic consequences of mechanical ventilation. Clin Pulm Med. 1999;6:52–65.CrossRef Welsh DA, Summer WR, deBloisblanc B, et al. Hemodynamic consequences of mechanical ventilation. Clin Pulm Med. 1999;6:52–65.CrossRef
37.
go back to reference Love R, Choe E, Lippton H, et al. Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output. J Trauma. 1995;39:195–9.PubMedCrossRef Love R, Choe E, Lippton H, et al. Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output. J Trauma. 1995;39:195–9.PubMedCrossRef
38.
go back to reference Bion JF. Multiple organ failure. In: Webb AR, Shapiro MJ, Singer M, et al., editors. Oxford textbook of critical care. New York, NY: Oxford University Press; 1999. p. 923–6. Bion JF. Multiple organ failure. In: Webb AR, Shapiro MJ, Singer M, et al., editors. Oxford textbook of critical care. New York, NY: Oxford University Press; 1999. p. 923–6.
39.
go back to reference Edouard AR, Degrémont A-C, Duranteau J, et al. Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med. 1994;20:414–20.PubMedCrossRef Edouard AR, Degrémont A-C, Duranteau J, et al. Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med. 1994;20:414–20.PubMedCrossRef
40.
go back to reference Haglund U. The gastrointestinal and hepatic systems: normal physiology; the gastrointestinal system. In: Webb AR, Shapiro MJ, Singer M, et al., rRedactie. Oxford textbook of critical care. New York: Oxford University Press; 1999. p. 297–300. Haglund U. The gastrointestinal and hepatic systems: normal physiology; the gastrointestinal system. In: Webb AR, Shapiro MJ, Singer M, et al., rRedactie. Oxford textbook of critical care. New York: Oxford University Press; 1999. p. 297–300.
41.
go back to reference Peura DA, Johnson LF. Cimetidine for prevention and treatment of gastroduodenal mucosal lesions in patients in an ICUs. Ann Intern Med. 1985;103:173–7.PubMedCrossRef Peura DA, Johnson LF. Cimetidine for prevention and treatment of gastroduodenal mucosal lesions in patients in an ICUs. Ann Intern Med. 1985;103:173–7.PubMedCrossRef
42.
go back to reference Dark DS, Pingleton SK. Nonhemorrhagic gastrointestinal complications in acute respiratory failure. Crit Care Med. 1989;17:755–8.PubMedCrossRef Dark DS, Pingleton SK. Nonhemorrhagic gastrointestinal complications in acute respiratory failure. Crit Care Med. 1989;17:755–8.PubMedCrossRef
43.
go back to reference Savoca PE, Longo WE, Pasternak B, et al. Does visceral ischemia play a role in the pathogenesis of acute acalculous cholecystitis? J Clin Gastroenterol. 1990;12:33–6.PubMedCrossRef Savoca PE, Longo WE, Pasternak B, et al. Does visceral ischemia play a role in the pathogenesis of acute acalculous cholecystitis? J Clin Gastroenterol. 1990;12:33–6.PubMedCrossRef
44.
go back to reference Spain DA, Kawabe T, Keelan PC, et al. Decreaseda-adrenergic response in the intestinal microcirculation after ‘two-hit’ hemorrhage/resuscitation and bacteremia. J Surg Res. 1999;84:180–5.PubMedCrossRef Spain DA, Kawabe T, Keelan PC, et al. Decreaseda-adrenergic response in the intestinal microcirculation after ‘two-hit’ hemorrhage/resuscitation and bacteremia. J Surg Res. 1999;84:180–5.PubMedCrossRef
46.
go back to reference McHenry LC Jr, West JW, Cooper ES, et al. Cerebral autoregulation in man. Stroke. 1974;5:695–706.PubMedCrossRef McHenry LC Jr, West JW, Cooper ES, et al. Cerebral autoregulation in man. Stroke. 1974;5:695–706.PubMedCrossRef
47.
go back to reference Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMed Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMed
48.
go back to reference Frost EA. Effects of positive end-expiratory pressure on intracranial pressure and compliance in brain-injured patients. J Neurosurg. 1977;47:195–200.PubMedCrossRef Frost EA. Effects of positive end-expiratory pressure on intracranial pressure and compliance in brain-injured patients. J Neurosurg. 1977;47:195–200.PubMedCrossRef
49.
go back to reference Andrews PJ. Pressure, flow and Occam’s razor: a matter of ‘steal’? Intensive Care Med. 2005;31:323–4.PubMedCrossRef Andrews PJ. Pressure, flow and Occam’s razor: a matter of ‘steal’? Intensive Care Med. 2005;31:323–4.PubMedCrossRef
50.
go back to reference Caricato A, Conti G, Della CF, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6.PubMedCrossRef Caricato A, Conti G, Della CF, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6.PubMedCrossRef
51.
go back to reference Huynh T, Messer M, Sing RF, et al. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. 2002;53:488–92.PubMedCrossRef Huynh T, Messer M, Sing RF, et al. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. 2002;53:488–92.PubMedCrossRef
52.
53.
go back to reference Masamoto K, Tanishita K. Oxygen transport in brain tissue. J Biomech Eng. 2009;131:74–82.CrossRef Masamoto K, Tanishita K. Oxygen transport in brain tissue. J Biomech Eng. 2009;131:74–82.CrossRef
54.
go back to reference Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78.PubMedCrossRef Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78.PubMedCrossRef
55.
go back to reference Foundation The Brain Trauma. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Critical pathway for the treatment of established intracranial hypertension. J Neurotrauma. 2000;17:537–8.CrossRef Foundation The Brain Trauma. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Critical pathway for the treatment of established intracranial hypertension. J Neurotrauma. 2000;17:537–8.CrossRef
56.
go back to reference Lowe GJ, Ferguson ND. Lung-protective ventilation in neurosurgical patients. Curr Opin Crit Care. 2006;12:3–7.PubMedCrossRef Lowe GJ, Ferguson ND. Lung-protective ventilation in neurosurgical patients. Curr Opin Crit Care. 2006;12:3–7.PubMedCrossRef
57.
go back to reference Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.PubMedCrossRef
58.
go back to reference Jaber S, Petrof BJ, Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.PubMedCrossRef Jaber S, Petrof BJ, Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.PubMedCrossRef
59.
go back to reference Laghi F, Cattapan SE, Jubran A, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–7.PubMedCrossRef Laghi F, Cattapan SE, Jubran A, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–7.PubMedCrossRef
60.
go back to reference Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27:1288–96.PubMedCrossRef Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27:1288–96.PubMedCrossRef
61.
go back to reference De Jonghe B, Sharshar T, Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.PubMedCrossRef De Jonghe B, Sharshar T, Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.PubMedCrossRef
62.
go back to reference De Jonghe B, Bastuji-Garin S, Durand MC, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.PubMedCrossRef De Jonghe B, Bastuji-Garin S, Durand MC, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35(9):2007–15.PubMedCrossRef
63.
go back to reference Fan E. Critical illness neuromyopathy and the role of physical therapy and rehabilitation in critically ill patients. Respir Care. 2012;57(6):933–44.PubMedCrossRef Fan E. Critical illness neuromyopathy and the role of physical therapy and rehabilitation in critically ill patients. Respir Care. 2012;57(6):933–44.PubMedCrossRef
64.
go back to reference Latronico N, Fenzi F, Recupero D, et al. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579–82.PubMedCrossRef Latronico N, Fenzi F, Recupero D, et al. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579–82.PubMedCrossRef
65.
go back to reference Sharshar T, Bastuji-Garin S, Stevens RD, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37(12):3047–53.PubMedCrossRef Sharshar T, Bastuji-Garin S, Stevens RD, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37(12):3047–53.PubMedCrossRef
66.
go back to reference Herridge MS, Tansey CM, Matte´ A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.PubMedCrossRef Herridge MS, Tansey CM, Matte´ A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.PubMedCrossRef
67.
go back to reference Macklin MT, Macklin CC. Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions: an interpretation of the clinical literature in the light of laboratory experiment. Medicine. 1944;23:281–358.CrossRef Macklin MT, Macklin CC. Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions: an interpretation of the clinical literature in the light of laboratory experiment. Medicine. 1944;23:281–358.CrossRef
68.
go back to reference Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive endexpiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive endexpiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed
69.
go back to reference Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132:880–4.PubMed Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132:880–4.PubMed
70.
go back to reference Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.PubMedPubMedCentralCrossRef Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.PubMedPubMedCentralCrossRef
71.
go back to reference Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med. 2012;40:510–7.PubMedPubMedCentralCrossRef Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med. 2012;40:510–7.PubMedPubMedCentralCrossRef
72.
go back to reference Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.PubMedCrossRef Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.PubMedCrossRef
73.
go back to reference Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.PubMedCrossRef
74.
go back to reference Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116(1 Suppl):9–15S.CrossRef Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116(1 Suppl):9–15S.CrossRef
75.
go back to reference Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.PubMed Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.PubMed
76.
go back to reference Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed
77.
go back to reference Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.PubMedCrossRef Protti A, Andreis DT, Monti M, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.PubMedCrossRef
78.
go back to reference Gattinoni L, Carlesso E, Cadringher P, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J. Suppl. 2003;47:15–25s.PubMedCrossRef Gattinoni L, Carlesso E, Cadringher P, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J. Suppl. 2003;47:15–25s.PubMedCrossRef
79.
go back to reference Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.PubMedCrossRef Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.PubMedCrossRef
80.
go back to reference Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164:122–30.PubMedCrossRef Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164:122–30.PubMedCrossRef
81.
go back to reference Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5.PubMedPubMedCentralCrossRef
82.
go back to reference Gattinoni L, Pelosi P, Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Cit Care Med. 1998;158:3–11. Gattinoni L, Pelosi P, Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Cit Care Med. 1998;158:3–11.
83.
84.
go back to reference Network The Acute Respiratory Distress Syndrome. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Network The Acute Respiratory Distress Syndrome. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
85.
go back to reference Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lungprotective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012; 308:1651–9. Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lungprotective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012; 308:1651–9.
86.
go back to reference Kavanagh BP, Laffey JG. Hypercapnia: permissive and therapeutic. Minerva Anestesiol. 2006;72:567–76.PubMed Kavanagh BP, Laffey JG. Hypercapnia: permissive and therapeutic. Minerva Anestesiol. 2006;72:567–76.PubMed
88.
go back to reference Slutsky AS, Tremblay LN. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157:1721–5.PubMedCrossRef Slutsky AS, Tremblay LN. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157:1721–5.PubMedCrossRef
89.
go back to reference Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.PubMedCrossRef Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.PubMedCrossRef
90.
go back to reference Imai Y, Parodo J, Kajikawa O, et al. Injurous mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289:2104–12.PubMedCrossRef Imai Y, Parodo J, Kajikawa O, et al. Injurous mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289:2104–12.PubMedCrossRef
91.
go back to reference Priestley J. The Discovery of Oxygen, Part 1. Experiments by Joseph Priestly, LL.D. (1775). Chicago, IL: albembic Club Reprints: University of Chicago Press;1912:53–4. Priestley J. The Discovery of Oxygen, Part 1. Experiments by Joseph Priestly, LL.D. (1775). Chicago, IL: albembic Club Reprints: University of Chicago Press;1912:53–4.
92.
go back to reference Kistler GS, Caldwell PRB, Weibel ER. Development of fine structural damage to alveolar and capillary lining cells in oxygen-poisoned rat lungs. J Cell Biol. 1967;32(3):605–28.PubMedPubMedCentralCrossRef Kistler GS, Caldwell PRB, Weibel ER. Development of fine structural damage to alveolar and capillary lining cells in oxygen-poisoned rat lungs. J Cell Biol. 1967;32(3):605–28.PubMedPubMedCentralCrossRef
93.
go back to reference Nash G, Bowen JA, Langlinais C. Respirator Lung: a misnomer. Arch Path. 1971;21:234–40. Nash G, Bowen JA, Langlinais C. Respirator Lung: a misnomer. Arch Path. 1971;21:234–40.
94.
go back to reference Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem. 1981;256(21):10986–92.PubMed Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem. 1981;256(21):10986–92.PubMed
95.
go back to reference Budinger GRS, Mutlu GM, Urich D, et al. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am J Respir Crit Care Med. 2011;183(8):1043–54.PubMedCrossRef Budinger GRS, Mutlu GM, Urich D, et al. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am J Respir Crit Care Med. 2011;183(8):1043–54.PubMedCrossRef
96.
go back to reference Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21.PubMedCrossRef Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21.PubMedCrossRef
97.
go back to reference Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29(8):1679–86.PubMedCrossRef Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29(8):1679–86.PubMedCrossRef
98.
go back to reference Hazelton JL, Balan I, Elmer GI, et al. Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death. J Neurotrauma. 2010;27(4):753–62.PubMedPubMedCentralCrossRef Hazelton JL, Balan I, Elmer GI, et al. Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death. J Neurotrauma. 2010;27(4):753–62.PubMedPubMedCentralCrossRef
99.
100.
go back to reference Santos C, Ferrer M, Roca J, et al. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med. 2000;161(1):26–31.PubMedCrossRef Santos C, Ferrer M, Roca J, et al. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med. 2000;161(1):26–31.PubMedCrossRef
101.
go back to reference Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.PubMedCrossRef
102.
go back to reference Panda AK, Nag K, Harbottle RR, et al. Effect of acute lung injury on structure and function of pulmonary surfactant films. Am J Respir Cell Mol Biol. 2004;30(641–6):50. Panda AK, Nag K, Harbottle RR, et al. Effect of acute lung injury on structure and function of pulmonary surfactant films. Am J Respir Cell Mol Biol. 2004;30(641–6):50.
103.
go back to reference Matalon S, Baker RR, Engstrom PC. Mechanisms and modifications of hyperoxic injury to the mammalian pulmonary surfactant system. In: Reinhart K, Eyrich K, rRedactie. Clinical Aspects of O2 Transport and Tissue Oxygenation. New York, NY: Springer-Verlag; 1989. p. 115–32. Matalon S, Baker RR, Engstrom PC. Mechanisms and modifications of hyperoxic injury to the mammalian pulmonary surfactant system. In: Reinhart K, Eyrich K, rRedactie. Clinical Aspects of O2 Transport and Tissue Oxygenation. New York, NY: Springer-Verlag; 1989. p. 115–32.
104.
go back to reference Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13:1455–76.PubMedCrossRef Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13:1455–76.PubMedCrossRef
105.
go back to reference Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.PubMedCrossRef Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.PubMedCrossRef
106.
go back to reference Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.PubMedCrossRef Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.PubMedCrossRef
107.
go back to reference Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.
108.
go back to reference Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585–99.PubMedCrossRef Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585–99.PubMedCrossRef
109.
go back to reference Hodgson C, Keating JL, Holland AE, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation (Review). The Cochrane Collaboration. 2012;6:1–33. Hodgson C, Keating JL, Holland AE, et al. Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation (Review). The Cochrane Collaboration. 2012;6:1–33.
110.
go back to reference Neto AS, Pereira VGM, Espósito DC, et al. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33.PubMedPubMedCentralCrossRef Neto AS, Pereira VGM, Espósito DC, et al. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33.PubMedPubMedCentralCrossRef
111.
go back to reference Flemming DC. Hazards of tracheal intubation. In: Orkin FK, Cooperman LH, editors. Complications in Anaesthesiology. Philadelphia: JB Lippincott Co.; 1983. Flemming DC. Hazards of tracheal intubation. In: Orkin FK, Cooperman LH, editors. Complications in Anaesthesiology. Philadelphia: JB Lippincott Co.; 1983.
112.
go back to reference Griesdale DEG, Bosma TL, Kurth T, et al. Complications of endotracheal intubation in the critically ill. Intensive Care Med. 2008;34:1835–42.PubMedCrossRef Griesdale DEG, Bosma TL, Kurth T, et al. Complications of endotracheal intubation in the critically ill. Intensive Care Med. 2008;34:1835–42.PubMedCrossRef
113.
go back to reference Stauffer JL, Silvester RC. Complications of endotracheal intubation, tracheostomy, and artificial airways. Respir Care. 1982;27:417–34. Stauffer JL, Silvester RC. Complications of endotracheal intubation, tracheostomy, and artificial airways. Respir Care. 1982;27:417–34.
114.
go back to reference Dorsch JA, Dorsch SE. Understanding anaesthesia equipment: construction, care and complications. 3rd ed. Baltimore: Williams and Wilkins; 1994. Dorsch JA, Dorsch SE. Understanding anaesthesia equipment: construction, care and complications. 3rd ed. Baltimore: Williams and Wilkins; 1994.
115.
go back to reference Bernhard WN, Cottrell JE, Sivakumaran C, et al. Adjustment of intracuff pressure to prevent aspiration. Anesthesiology. 1979;50:363–6.PubMedCrossRef Bernhard WN, Cottrell JE, Sivakumaran C, et al. Adjustment of intracuff pressure to prevent aspiration. Anesthesiology. 1979;50:363–6.PubMedCrossRef
116.
go back to reference Seegobin RD, Van Hasselt GL. Endotracheal cuff pressure and tracheal mucosal blood flow: endoscopic study of effects of four large-volume cuffs. Br Med J. 1984;288:965–8.CrossRef Seegobin RD, Van Hasselt GL. Endotracheal cuff pressure and tracheal mucosal blood flow: endoscopic study of effects of four large-volume cuffs. Br Med J. 1984;288:965–8.CrossRef
117.
go back to reference Crimlisk JT, Horn MH, Wilson DJ, et al. Artificial airways: a survey of cuff management practices. Heart Lung. 1996;25:225–35.PubMedCrossRef Crimlisk JT, Horn MH, Wilson DJ, et al. Artificial airways: a survey of cuff management practices. Heart Lung. 1996;25:225–35.PubMedCrossRef
119.
go back to reference Freeman BD, Isabella K, Lin N, et al. A metaanalysis of prospective trials comparing percutaneous and surgical tracheostomy in critically ill patients. Chest. 2000;118:1412–8.PubMedCrossRef Freeman BD, Isabella K, Lin N, et al. A metaanalysis of prospective trials comparing percutaneous and surgical tracheostomy in critically ill patients. Chest. 2000;118:1412–8.PubMedCrossRef
120.
go back to reference Mehta S, Hill NS. Noninvasive ventilation: state of the art. Am J Respir Crit Care Med. 2001;163:540–77.PubMedCrossRef Mehta S, Hill NS. Noninvasive ventilation: state of the art. Am J Respir Crit Care Med. 2001;163:540–77.PubMedCrossRef
121.
122.
go back to reference AARC Clinical Practice Guideline. Restrepo RD, Walsh BK. Humidification during invasive and noninvasive mechanical ventilation 2012. Respir Care. 2012;57(5):782–8.CrossRef AARC Clinical Practice Guideline. Restrepo RD, Walsh BK. Humidification during invasive and noninvasive mechanical ventilation 2012. Respir Care. 2012;57(5):782–8.CrossRef
123.
go back to reference Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.PubMedCrossRef Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.PubMedCrossRef
124.
go back to reference National Nosocomial Infections Surveillance (NNIS) System. NNIS report, data summary from 1992 to June 2004, issued October 2004. Am J Infect Control. 200432470485. National Nosocomial Infections Surveillance (NNIS) System. NNIS report, data summary from 1992 to June 2004, issued October 2004. Am J Infect Control. 200432470485.
125.
go back to reference Niederman M, Craven DE, Bonten MJ, et al. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef Niederman M, Craven DE, Bonten MJ, et al. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef
126.
go back to reference Melsen WG, Rovers MM, Bonten MJ. Ventilator-associated pneumonia and mortality: a systematic review of observational studies. Crit Care Med. 2009;37:2709–18.PubMedCrossRef Melsen WG, Rovers MM, Bonten MJ. Ventilator-associated pneumonia and mortality: a systematic review of observational studies. Crit Care Med. 2009;37:2709–18.PubMedCrossRef
127.
go back to reference Koulenti D, Lisboa T, Brun-Buisson C, et al. EU-VAP/CAP Study Group: spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med. 2009;37:2360–8.PubMedCrossRef Koulenti D, Lisboa T, Brun-Buisson C, et al. EU-VAP/CAP Study Group: spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med. 2009;37:2360–8.PubMedCrossRef
128.
go back to reference Stevens JP, Kachniarz B, Wright SB, et al. When policy gets it right: variability in U.S. hospitals’ diagnosis of ventilator-associated pneumonia. Crit Care Med. 2014;42:497–503.PubMedCrossRef Stevens JP, Kachniarz B, Wright SB, et al. When policy gets it right: variability in U.S. hospitals’ diagnosis of ventilator-associated pneumonia. Crit Care Med. 2014;42:497–503.PubMedCrossRef
129.
go back to reference Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med. 2013;41:2467–75.PubMedCrossRef Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med. 2013;41:2467–75.PubMedCrossRef
130.
go back to reference Babcock HM, Zack JE, Garrison T, et al. An educational intervention to reduce ventilator-associated pneumonia in an integrated health system. A comparison of effects. Chest. 2004;125:2224–31.PubMed Babcock HM, Zack JE, Garrison T, et al. An educational intervention to reduce ventilator-associated pneumonia in an integrated health system. A comparison of effects. Chest. 2004;125:2224–31.PubMed
131.
go back to reference Fernandez JF, Levine SM, Restrepo MI. Technologic advances in endotracheal tubes for prevention of ventilator-associated pneumonia. Chest. 2012;142(1):231–8.PubMedPubMedCentralCrossRef Fernandez JF, Levine SM, Restrepo MI. Technologic advances in endotracheal tubes for prevention of ventilator-associated pneumonia. Chest. 2012;142(1):231–8.PubMedPubMedCentralCrossRef
132.
go back to reference Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.PubMedCrossRef Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.PubMedCrossRef
133.
go back to reference Strøm T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475–80.PubMedCrossRef Strøm T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475–80.PubMedCrossRef
134.
go back to reference Bauer TM, Ritz R, Haberthur C, et al. prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.PubMedCrossRef Bauer TM, Ritz R, Haberthur C, et al. prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.PubMedCrossRef
135.
go back to reference Jaarsma AS, Uges DRA. Propyleenglycol, een verraderlijk oplosmiddel in geneesmiddelen. Tijdschr kindergeneeskund. 2001;69(4):94–7.CrossRef Jaarsma AS, Uges DRA. Propyleenglycol, een verraderlijk oplosmiddel in geneesmiddelen. Tijdschr kindergeneeskund. 2001;69(4):94–7.CrossRef
136.
go back to reference Oto J, Yamamoto K, Koike S, et al. Effect of daily sedative interruption on sleep stages of mechanically ventilated patients receiving midazolam by infusion. Anaesth Intensive Care. 2011;39:392–400.PubMed Oto J, Yamamoto K, Koike S, et al. Effect of daily sedative interruption on sleep stages of mechanically ventilated patients receiving midazolam by infusion. Anaesth Intensive Care. 2011;39:392–400.PubMed
137.
go back to reference Sanchez-Izquierdo-Riera JA, Caballero-Cubedo RE, Perez-Vela JL, et al. Propofol versus midazolam: safety and efficacy for sedating the severe trauma patient. Anesth Analg. 1998;86(6):1219–24.PubMed Sanchez-Izquierdo-Riera JA, Caballero-Cubedo RE, Perez-Vela JL, et al. Propofol versus midazolam: safety and efficacy for sedating the severe trauma patient. Anesth Analg. 1998;86(6):1219–24.PubMed
138.
go back to reference Kondili E, Alexopoulou C, Xirouchaki N, Georgopoulos D. Effects of propofol on sleep quality in mechanically ventilated critically ill patients: a physiological study. Intensive Care Med. 2012;38:1640–6.PubMedCrossRef Kondili E, Alexopoulou C, Xirouchaki N, Georgopoulos D. Effects of propofol on sleep quality in mechanically ventilated critically ill patients: a physiological study. Intensive Care Med. 2012;38:1640–6.PubMedCrossRef
140.
go back to reference Cremer OL, Moons KGM, Bouman EAC, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2001;357:117–8.PubMedCrossRef Cremer OL, Moons KGM, Bouman EAC, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2001;357:117–8.PubMedCrossRef
141.
go back to reference Guidelines for the prevention of intravascular catheter-related infections 2011. Center of Disease Control (CDC) and Healthcare Infection Control Practices Advisory Committee (HICPAC). Guidelines for the prevention of intravascular catheter-related infections 2011. Center of Disease Control (CDC) and Healthcare Infection Control Practices Advisory Committee (HICPAC).
142.
go back to reference Chen K, Lu Z, Xin YC, et al. Alpha−2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst Rev. 2015;(1):CD010269. Chen K, Lu Z, Xin YC, et al. Alpha−2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst Rev. 2015;(1):CD010269.
143.
144.
go back to reference Smego RA Jr, Durack DT. The neuroleptic malignant syndrome. Arch Inter Med. 1982;142(6):1183–5.CrossRef Smego RA Jr, Durack DT. The neuroleptic malignant syndrome. Arch Inter Med. 1982;142(6):1183–5.CrossRef
145.
go back to reference Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects. Pain Physician. 2008;11:S105–20.PubMed Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects. Pain Physician. 2008;11:S105–20.PubMed
146.
go back to reference Kosten TR, O’Connor PG. Management of drug and alcohol withdrawal. N Engl J Med. 2003;348:1786–95.PubMedCrossRef Kosten TR, O’Connor PG. Management of drug and alcohol withdrawal. N Engl J Med. 2003;348:1786–95.PubMedCrossRef
147.
go back to reference Bennett S, Hurford WE. When should sedation or neuromuscular blockade be used during mechanical ventilation? Respir Care. 2011;56(2):168–76.PubMedCrossRef Bennett S, Hurford WE. When should sedation or neuromuscular blockade be used during mechanical ventilation? Respir Care. 2011;56(2):168–76.PubMedCrossRef
148.
go back to reference Leatherman JW, Fluegel WL, David WS, et al. Muscle weakness in mechanically ventilated patients with severe astma. Am J Respir Crit Care Med. 1996;153:1686–90.PubMedCrossRef Leatherman JW, Fluegel WL, David WS, et al. Muscle weakness in mechanically ventilated patients with severe astma. Am J Respir Crit Care Med. 1996;153:1686–90.PubMedCrossRef
149.
go back to reference David W, Roehr C, Leatherman J. EMG findings in acute myopathy with status asthmaticus, steroids and paralytics: clinical and electrophysiologic correlation. Electromyogr Clin Neurophysiol. 1998;3896:371–6. David W, Roehr C, Leatherman J. EMG findings in acute myopathy with status asthmaticus, steroids and paralytics: clinical and electrophysiologic correlation. Electromyogr Clin Neurophysiol. 1998;3896:371–6.
150.
go back to reference Parthasarathy S, Tobin MJ. Sleep in the intensive care unit. Intensive Care Med. 2004;30:197–206.PubMedCrossRef Parthasarathy S, Tobin MJ. Sleep in the intensive care unit. Intensive Care Med. 2004;30:197–206.PubMedCrossRef
151.
go back to reference Rotondi AJ, Chelluri L, Sirio C, et al. Patients’ recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Crit Care Med. 2002;30:746–52.PubMedCrossRef Rotondi AJ, Chelluri L, Sirio C, et al. Patients’ recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Crit Care Med. 2002;30:746–52.PubMedCrossRef
152.
go back to reference Hardin KA. Sleep in the ICU: potential mechanisms and clinical implications. Chest. 2009;136:284–94.PubMedCrossRef Hardin KA. Sleep in the ICU: potential mechanisms and clinical implications. Chest. 2009;136:284–94.PubMedCrossRef
153.
go back to reference Fanfulla F, Ceriana P, D’Artavilla Lupo N, et al. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. Sleep. 2011;34:355–62.PubMedPubMedCentral Fanfulla F, Ceriana P, D’Artavilla Lupo N, et al. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. Sleep. 2011;34:355–62.PubMedPubMedCentral
154.
go back to reference Roche-Campo F, Thille AW, Drouot X, et al. Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically iII tracheostomized patients. Crit Care Med. 2013;41:1637–44.PubMedCrossRef Roche-Campo F, Thille AW, Drouot X, et al. Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically iII tracheostomized patients. Crit Care Med. 2013;41:1637–44.PubMedCrossRef
155.
go back to reference Toublanc B, Rose D, Glérant J-C, et al. Assist-control ventilation vs. low levels of pressure support ventilation on sleep quality in intubated ICU patients. Intensive Care Med. 2007;33:1148–54.PubMedCrossRef Toublanc B, Rose D, Glérant J-C, et al. Assist-control ventilation vs. low levels of pressure support ventilation on sleep quality in intubated ICU patients. Intensive Care Med. 2007;33:1148–54.PubMedCrossRef
156.
go back to reference Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Resp Crit Care Med. 2002;166:1423–9.PubMedCrossRef Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Resp Crit Care Med. 2002;166:1423–9.PubMedCrossRef
157.
go back to reference Bosma K, Ferreyra G, Ambrogio C, et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med. 2007;35:1048–54.PubMedCrossRef Bosma K, Ferreyra G, Ambrogio C, et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med. 2007;35:1048–54.PubMedCrossRef
158.
go back to reference Delisle S, Ouellet P, Bellemare P, et al. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care. 2011;1:42.PubMedPubMedCentralCrossRef Delisle S, Ouellet P, Bellemare P, et al. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care. 2011;1:42.PubMedPubMedCentralCrossRef
Metagegevens
Titel
Complicaties en andere gevolgen van mechanische beademing
Auteur
Hans ter Haar
Copyright
2017
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-1590-1_10