Background
The structure and the movements of the foot arches are crucial for a person's wellbeing and for optimal function of the body [
1]. Because the medial longitudinal arch (MLA) is the primary shock-absorbing structure of the foot, this area of the foot is particularly important for foot function [
2]. To date, no firm conclusions can be made on the link between midfoot posture and the development of injuries. Finch [
3] suggested conducting large scale prospective studies to investigate if the time to injury differs between individuals with different midfoot postures. In such a prospective cohort study, participants must be categorized into exposure groups based on their midfoot posture at baseline. Then, participants are followed over time to identify if the hazard of sustaining an injury varies among persons with different foot postures. However, to our knowledge no cut-off values have been presented to categorize participants into exposure groups based on their midfoot posture.
In general, two different approaches have been used to quantify midfoot characteristics. In the first approach, the maximum value is measured, which represents the maximal deformation of the MLA in a weight-bearing condition. In the second approach, the range of motion (ROM) is measured, which is the difference between the subtalar joint neutral position and the subtalar joint resting position measured in a weight-bearing position [
4]. Different tests have been proposed to measure maximum values and ROM of the MLA. First, in 1909, the Feiss line (FL) was described [
5], which classified foot type in the subtalar joint neutral and the subtalar joint resting positions. Second, navicular height (NH) and navicular drop (ND) were described by Brody in 1982 [
6]. These methods allowed measurement, and evaluation, of the amount of pronation and its significance. Finally, in 1991 the longitudinal arch angle (LAA) was presented by Dahle et al. [
7] to determine the relationship between foot type with subsequent knee pain or ankle sprains and to establish the interrater reliability of classifying foot type by visual observation. Because all three methods can be used to quantify the maximum value and ROM of MLA, cut-off values to categorize MLA into high arched, normal, and low arched should be provided for all three tests.
Previously, Williams et al. [
8] used the standard deviation of the mean value to define cut-off values for the arch index of the midfoot, a fourth method used to quantify midfoot maximum values and ROM. Based on the cut-off values for the arch ratios, participants were divided into groups. Williams et al. [
8] reported that a low or a high arch structure was associated with different injury patterns. In previous studies, participants have been categorized into exposure groups based on their alignment of other parts of the lower extremity [
9]. Similarly, it is possible to categorize participants into exposure groups based on the static assessments of the NH [
6], LAA [
7], and FL [
5]. However, to date the cut-off values for NH, LAA, and FL have only been reported as expert statements [
6] or based on visual assessment [
7]. To our knowledge, there is no report of using the prediction intervals to define cut-off values for NH, LAA, and FL. The primary purpose of this study was to identify cut-off values for maximum values and ROM values of NH, LAA, and FL based on the 68% and 95% prediction intervals.
While foot size and gender have been shown to be associated with measures of the midfoot in dynamic conditions, body mass index (BMI) or age do not appear to be associated with NH under dynamic measures [
10]. However, to date it is unclear if these variables would be associated with foot posture in static measures. Furthermore, the total number of years of performing standing work and the number of hours worked at the time of measurement may be associated with the foot measures. The secondary purpose of this study was to determine the association between foot size, gender, BMI, age, years of performing standing work and hours worked at the time of measurement with NH, LAA, and FL, and if these parameters play a role to present a method to calculate cut-off values taking into account the association between different variables with NH, LAA, and FL.
Discussion
The primary purpose of this study was to identify cut-off values for maximum and ROM values of NH, LAA and FL based on the 68% and 95% prediction intervals. Cut-off values for maximum values or ROM in the static assessment of FL, NH, and LAA were presented without taking into account the effect of other variables. These cut-off values can be used by clinicians as a simple tool to categorize the MLA of persons who perform standing work. Furthermore, multivariate regression analysis was used to calculate cut-off values while taking into account foot size and other parameters.
Categorization of MLA can be calculated based on the regression equation and 68% and 95% cut-off values using the standard deviation reported in Table
2: cut - off value (regression equation) ± (1 or 2 standard deviations). For instance the 68% cut-off values/normal reference range for ND for a 30-year old male with a foot length of 28 cm, BMI of 25 kg/m
2 who has been working 4 hours at the time of measurement and worked 4 years performing standing work are:
This equation represents a precise method for calculating the cut-off values. This method can be used in future studies categorize participants into groups based on their midfoot posture.
The results of this study can be compared with other studies. Brody [
6] reported normal amounts of ND of approximately 1 cm and considered a value of 1.5 cm as the upper boundary limit while no lower boundary limit was reported. In the current study, a normal ND was within the range of 0.6 to 1.8 cm, which corresponds well with the suggestions by Brody. However, it must be emphasized that the normal range of 0.6 to 1.8 cm was calculated without taking into account the effect of other variables.
To our knowledge, to date no cut-off values have been reported for NH. However, several studies [
12,
16‐
18] reported mean values of 3.7 to 4.7 cm, which is within the range of 3.6 to 5.5 cm used in the current study to categorize a normal foot.
Previously, LAA has been assessed visually by Dahle et al. [
7]. Based on results from 55 participants, LAAs between 120 and 150° were classified as normal. The cut-off values of 131 to 152° reported in the current study were close to the proposed values reported by Dahle et al. [
7]. However, cut-off values of 162 and 121° to distinguish between high arched and severely high arched and between low arched and severely low arched, respectively, differ considerably from those proposed by Dahle et al. [
7] who suggested that participants with LAA close to 90° were classified as low arched, while participants with an LAA close to 180° were considered to have a high arch.
No studies were found which reported cut-off values or mean values for FL tests. Therefore, no external comparisons with the normal range of 0.9 to -0.1 cm can be made.
The results of the multivariate linear regression analysis revealed that age only had an association with maximum LAA values among males. However, the change in estimate per year was rather small. Therefore, the association between age with maximum LAA values is considered clinically insignificant. This result is in contrast to previous findings where a U-shaped pattern was reported between age and foot posture among children, in the general population and in the elderly [
19]. However, because neither children nor elderly people were included in the current study, the insignificant association between age with most midfoot measures may be explained by the different age groups included in the two studies.
No clinically relevant and, in most cases, no statistically significant association between BMI, hours of standing work before the measurements, and total years performing standing work were found from with the different measurements of the MLA. These results are similar to those of Nielsen et al. [
10] who found that age and BMI had no significant association with the foot position in dynamic conditions. However, in three studies [
10,
19,
20], foot length was significantly associated with NH. In the current study, foot size had a significant association with most MLA parameters among males. Per 1 cm increase in foot size, ND was increased by 0.7 mm. For example, when comparing a 30 cm foot size with a 40 cm foot size, the expected increase in ND would be 0.7 cm. To avoid misclassification, such association between foot size and ND should be considered when categorizing subjects into high arched, normal and low arched groups, taking into account that a normal ND is between 0.6 and 1.8 cm. The effect of foot size can be accounted for by calculating the cut-off value based on the equation described above.
In the current study, NH, LAA, and FL were used to classify the midfoot posture in the sagittal plane. However, other tests for evaluating foot position have been described in the literature.
Recently, the Foot Posture Index (FPI) has been shown to be a valid and reliable tool for performing multiple segment, multiple plane evaluation of the foot as a whole [
19,
21,
22]. Both the quantification of the midfoot measured in a single segment and the evaluation of the FPI in multiple segments can be used as tools to investigate the relationship between foot postures and injury development. One item of the FPI is the visual assessment of the arch height and congruence. Visual assessment of the MLA is a fast and simple alternative to describing midfoot posture compared with the tests presented in the current article. However, in their review, Razeghi and Batt [
23] found one study where foot type classification based on direct observation demonstrated significantly higher variability. In another study, Cowan et al. [
24] found the probability of two clinicians assessing the same foot as clearly flat ranged from 0.32 to 0.79, with a median probability of 0.57, while for clearly high-arched feet, comparable probabilities ranged from 0.00 to 1.00, with a median of 0.17. Based on these findings, it was concluded that there is a need for objective standards and quantitative methods for evaluating the MLA. The question arises whether or not the visual assessment of MLA is an appropriate tool in the FPI when valid and reliable alternatives such as NH or LAA exist.
Future studies should investigate if NH or LAA provide a better estimate of the midfoot than visual assessment of MLA which is used in the FPI. If this is the case, one may consider creating an extended FPI model where the visual assessment of the MLA would be replaced by NH or LAA. The method for calculating the cut-off values presented in the current study could be used to differentiate between the five categories (-2 to +2) currently used in the FPI.
Based on the cut-off values presented in this study, future studies can be conducted to investigate the injury incidence in persons with severely high, high, normal, low and severely low arched feet. If injury incidence varies between individuals with different foot postures, specific treatment modalities for modifying foot position and/or reducing the injury incidence would be warranted.
This study has some limitations. First, a relatively small sample of women was included in this study. Therefore, results of the regression analysis based on data from the 56 females should be interpreted with caution. Second, neutral position of the subtalar joint was defined as equal palpation of the medial and lateral aspects of the head of talus in relation to the navicular [
10]. Previously, Pierrynowski et al. [
25] investigated the proficiency of students and clinicians to place the foot in subtalar neutral. They found the rearfoot angle measured by experienced foot care specialists to be measured within +/- 3.0° of the subtalar neutral position 90% of the time. The corresponding value for the students was +/- 4.9°. Similarly, it has been stated that no method for measuring subtalar neutral position has been proven accurate and reproducible by different testers [
26]. Therefore, the placement of the subtalar joint in its neutral position may be the greatest limitation in the current study. The ROM measurements presented may be interpreted with caution because the placement of the foot in subtalar neutral is part of the procedure for measuring the ROM.
Authors' contributions
All authors read and approved the final manuscript. MKN carried out the acquisition of data and has been involved in drafting the manuscript. RF carried out the acquisition of data and has been involved in drafting the manuscript. MSM carried out the acquisition of data and has been involved in drafting the manuscript. PAJ carried out the acquisition of data and has been involved in drafting the manuscript. RON has made substantial contributions to conception, design, analysis, and interpretation of data as well as revised the manuscript critically for important intellectual content.