Skip to main content
Top
Gepubliceerd in:

04-01-2022 | Original Paper

Classification of Preschoolers with Low-Functioning Autism Spectrum Disorder Using Multimodal MRI Data

Auteurs: Johanna Inhyang Kim, Sungkyu Bang, Jin-Ju Yang, Heejin Kwon, Soomin Jang, Sungwon Roh, Seok Hyeon Kim, Mi Jung Kim, Hyun Ju Lee, Jong-Min Lee, Bung-Nyun Kim

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 1/2023

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Multimodal imaging studies targeting preschoolers and low-functioning autism spectrum disorder (ASD) patients are scarce. We applied machine learning classifiers to parameters from T1-weighted MRI and DTI data of 58 children with ASD (age 3–6 years) and 48 typically developing controls (TDC). Classification performance reached an accuracy, sensitivity, and specificity of 88.8%, 93.0%, and 83.8%, respectively. The most prominent features were the cortical thickness of the right inferior occipital gyrus, mean diffusivity of the middle cerebellar peduncle, and nodal efficiency of the left posterior cingulate gyrus. Machine learning-based analysis of MRI data was useful in distinguishing low-functioning ASD preschoolers from TDCs. Combination of T1 and DTI improved classification accuracy about 10%, and large-scale multi-modal MRI studies are warranted for external validation.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Akshoomoff, N., Lord, C., Lincoln, A. J., Courchesne, R. Y., Carper, R. A., Townsend, J., & Courchesne, E. (2004). Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. Journal of the American Academy of Child and Adolescent Psychiatry, 43(3), 349–357. https://doi.org/10.1097/00004583-200403000-00018CrossRef Akshoomoff, N., Lord, C., Lincoln, A. J., Courchesne, R. Y., Carper, R. A., Townsend, J., & Courchesne, E. (2004). Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. Journal of the American Academy of Child and Adolescent Psychiatry, 43(3), 349–357. https://​doi.​org/​10.​1097/​00004583-200403000-00018CrossRef
go back to reference Andrews, D. S., Lee, J. K., Solomon, M., Rogers, S. J., Amaral, D. G., & Nordahl, C. W. (2019). A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. Journal of Neurodevelopmental Disorders, 11(1), 32. https://doi.org/10.1186/s11689-019-9291-zCrossRef Andrews, D. S., Lee, J. K., Solomon, M., Rogers, S. J., Amaral, D. G., & Nordahl, C. W. (2019). A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. Journal of Neurodevelopmental Disorders, 11(1), 32. https://​doi.​org/​10.​1186/​s11689-019-9291-zCrossRef
go back to reference Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorodny, W., Rosenberg, C.R., White, T., & Dowling, N. F. (2018). Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1–23. https://doi.org/10.15585/mmwr.ss6706a1CrossRef Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorodny, W., Rosenberg, C.R., White, T., & Dowling, N. F. (2018). Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1–23. https://​doi.​org/​10.​15585/​mmwr.​ss6706a1CrossRef
go back to reference Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.CrossRef Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.CrossRef
go back to reference Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., & Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667. https://doi.org/10.1038/mp.2013.78CrossRef Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., & Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667. https://​doi.​org/​10.​1038/​mp.​2013.​78CrossRef
go back to reference Dietz, C., Swinkels, S. H., Buitelaar, J. K., Van Daalen, E., & Van Engeland, H. (2007). Stability and change of IQ scores in preschool children diagnosed with autism spectrum disorder. European Child and Adolescent Psychiatry, 16(6), 405–410.CrossRef Dietz, C., Swinkels, S. H., Buitelaar, J. K., Van Daalen, E., & Van Engeland, H. (2007). Stability and change of IQ scores in preschool children diagnosed with autism spectrum disorder. European Child and Adolescent Psychiatry, 16(6), 405–410.CrossRef
go back to reference Erbetta, A., Bulgheroni, S., Contarino, V. E., Chiapparini, L., Esposito, S., Annunziata, S., & Riva, D. (2015). Low-functioning autism and nonsyndromic intellectual disability: Magnetic resonance imaging (MRI) findings. Journal of Child Neurology, 30(12), 1658–1664.CrossRef Erbetta, A., Bulgheroni, S., Contarino, V. E., Chiapparini, L., Esposito, S., Annunziata, S., & Riva, D. (2015). Low-functioning autism and nonsyndromic intellectual disability: Magnetic resonance imaging (MRI) findings. Journal of Child Neurology, 30(12), 1658–1664.CrossRef
go back to reference Flanagan, H. E., Smith, I. M., Vaillancourt, T., Duku, E., Szatmari, P., Bryson, S., Fombonne, E., Mirenda, P., Roberts, W., Volden, J., Waddell, C., Zwaigenbaum, L., Bennett, T., Elsabbagh, M., & Georgiades, S. (2015). Stability and change in the cognitive and adaptive behavior scores of preschoolers with autism spectrum disorder. J Autism Devel Disord, 45, 2691–2703.CrossRef Flanagan, H. E., Smith, I. M., Vaillancourt, T., Duku, E., Szatmari, P., Bryson, S., Fombonne, E., Mirenda, P., Roberts, W., Volden, J., Waddell, C., Zwaigenbaum, L., Bennett, T., Elsabbagh, M., & Georgiades, S. (2015). Stability and change in the cognitive and adaptive behavior scores of preschoolers with autism spectrum disorder. J Autism Devel Disord, 45, 2691–2703.CrossRef
go back to reference Gabrielsen, T. P., Anderson, J. S., Stephenson, K. G., Beck, J., King, J. B., Kellems, R., Top, D.N., Russell, N.C., Anderberg, E., Lundwall, R.A., & South, M. (2018). Functional MRI connectivity of children with autism and low verbal and cognitive performance. Molecular Autism, 9, 67. https://doi.org/10.1186/s13229-018-0248-yCrossRef Gabrielsen, T. P., Anderson, J. S., Stephenson, K. G., Beck, J., King, J. B., Kellems, R., Top, D.N., Russell, N.C., Anderberg, E., Lundwall, R.A., & South, M. (2018). Functional MRI connectivity of children with autism and low verbal and cognitive performance. Molecular Autism, 9, 67. https://​doi.​org/​10.​1186/​s13229-018-0248-yCrossRef
go back to reference Gori, I., Giuliano, A., Muratori, F., Saviozzi, I., Oliva, P., Tancredi, R., Cosenza, A., Tosetti, M., Calderoni, S., & Retico, A. (2015). Gray matter alterations in young children with autism spectrum disorders: Comparing morphometry at the voxel and regional level. Journal of Neuroimaging, 25(6), 866–874. https://doi.org/10.1111/jon.12280CrossRef Gori, I., Giuliano, A., Muratori, F., Saviozzi, I., Oliva, P., Tancredi, R., Cosenza, A., Tosetti, M., Calderoni, S., & Retico, A. (2015). Gray matter alterations in young children with autism spectrum disorders: Comparing morphometry at the voxel and regional level. Journal of Neuroimaging, 25(6), 866–874. https://​doi.​org/​10.​1111/​jon.​12280CrossRef
go back to reference Im, K., Lee, J. M., Yoon, U., Shin, Y. W., Hong, S. B., Kim, I. Y., Kwon, J.S., & Kim, S. I. (2006). Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area. Human Brain Mapping, 27(12), 994–1003. https://doi.org/10.1002/hbm.20238CrossRef Im, K., Lee, J. M., Yoon, U., Shin, Y. W., Hong, S. B., Kim, I. Y., Kwon, J.S., & Kim, S. I. (2006). Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area. Human Brain Mapping, 27(12), 994–1003. https://​doi.​org/​10.​1002/​hbm.​20238CrossRef
go back to reference Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D., & Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980–988. https://doi.org/10.1097/00004583-199707000-00021CrossRef Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D., & Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980–988. https://​doi.​org/​10.​1097/​00004583-199707000-00021CrossRef
go back to reference Kim, Y. S., Cheon, K. A., Kim, B. N., Chang, S. A., Yoo, H. J., Kim, J. W., Cho, S. C., Seo, D. H., Bae, M. O., So, Y. K., & Leventhal, B. (2004). The reliability and validity of kiddie-schedule for affective disorders and schizophrenia-present and lifetime version- Korean version (K-SADS-PL-K). Yonsei Medical Journal, 45(1), 81–89. https://doi.org/10.3349/ymj.2004.45.1.81CrossRef Kim, Y. S., Cheon, K. A., Kim, B. N., Chang, S. A., Yoo, H. J., Kim, J. W., Cho, S. C., Seo, D. H., Bae, M. O., So, Y. K., & Leventhal, B. (2004). The reliability and validity of kiddie-schedule for affective disorders and schizophrenia-present and lifetime version- Korean version (K-SADS-PL-K). Yonsei Medical Journal, 45(1), 81–89. https://​doi.​org/​10.​3349/​ymj.​2004.​45.​1.​81CrossRef
go back to reference Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B., Froehlich, A. L., Nielsen, J. A., Cariello, A.N., Zielinski, B.A., Anderson, J.S., Fletcher, P.T., & Lainhart, J. E. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Research, 8(1), 82–93. https://doi.org/10.1002/aur.1427CrossRef Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B., Froehlich, A. L., Nielsen, J. A., Cariello, A.N., Zielinski, B.A., Anderson, J.S., Fletcher, P.T., & Lainhart, J. E. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Research, 8(1), 82–93. https://​doi.​org/​10.​1002/​aur.​1427CrossRef
go back to reference Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.CrossRef Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.CrossRef
go back to reference Moon, S. J., Hwang, J., Kana, R., Torous, J., & Kim, J. W. (2019). Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: Systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Mental Health, 6(12), e14108. https://doi.org/10.2196/14108CrossRef Moon, S. J., Hwang, J., Kana, R., Torous, J., & Kim, J. W. (2019). Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: Systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Mental Health, 6(12), e14108. https://​doi.​org/​10.​2196/​14108CrossRef
go back to reference Nordahl, C. W., Mello, M., Shen, A. M., Shen, M. D., Vismara, L. A., Li, D., Harrington, K., Tanase, C., Goodlin-Jones, B., Rogers, S., & Amaral, D. G. (2016). Methods for acquiring MRI data in children with autism spectrum disorder and intellectual impairment without the use of sedation. Journal of Neurodevelopmental Disorders, 8, 20. https://doi.org/10.1186/s11689-016-9154-9CrossRef Nordahl, C. W., Mello, M., Shen, A. M., Shen, M. D., Vismara, L. A., Li, D., Harrington, K., Tanase, C., Goodlin-Jones, B., Rogers, S., & Amaral, D. G. (2016). Methods for acquiring MRI data in children with autism spectrum disorder and intellectual impairment without the use of sedation. Journal of Neurodevelopmental Disorders, 8, 20. https://​doi.​org/​10.​1186/​s11689-016-9154-9CrossRef
go back to reference Park, K. S., Yoon, Y. H., Park, H. J., Kwon, K. U. (1996). Development of KEDI-WISC, individual intelligence test for Korean children. In. Seoul, Republic of Korea: Korean Educational Development Institute. Park, K. S., Yoon, Y. H., Park, H. J., Kwon, K. U. (1996). Development of KEDI-WISC, individual intelligence test for Korean children. In. Seoul, Republic of Korea: Korean Educational Development Institute.
go back to reference Payabvash, S., Palacios, E. M., Owen, J. P., Wang, M. B., Tavassoli, T., Gerdes, M., Brandes-Aitken, A., Cuneo, D., Marco, E. J., & Mukherjee, P. (2019). White matter connectome edge density in children with autism spectrum disorders: Potential imaging biomarkers using machine-learning models. Brain Connect, 9(2), 209–220. https://doi.org/10.1089/brain.2018.0658CrossRef Payabvash, S., Palacios, E. M., Owen, J. P., Wang, M. B., Tavassoli, T., Gerdes, M., Brandes-Aitken, A., Cuneo, D., Marco, E. J., & Mukherjee, P. (2019). White matter connectome edge density in children with autism spectrum disorders: Potential imaging biomarkers using machine-learning models. Brain Connect, 9(2), 209–220. https://​doi.​org/​10.​1089/​brain.​2018.​0658CrossRef
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
go back to reference Shen, M. D., Li, D. D., Keown, C. L., Lee, A., Johnson, R. T., Angkustsiri, K., Rogers, S.J., Müller, R.A., Amaral, D.G., & Nordahl, C. W. (2016). Functional connectivity of the amygdala is disrupted in preschool-aged children with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 55(9), 817–824. https://doi.org/10.1016/j.jaac.2016.05.020CrossRef Shen, M. D., Li, D. D., Keown, C. L., Lee, A., Johnson, R. T., Angkustsiri, K., Rogers, S.J., Müller, R.A., Amaral, D.G., & Nordahl, C. W. (2016). Functional connectivity of the amygdala is disrupted in preschool-aged children with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 55(9), 817–824. https://​doi.​org/​10.​1016/​j.​jaac.​2016.​05.​020CrossRef
go back to reference Shin, M. S., & Cho, S. C. (2010). The Korean Leiter International Performance Scale—Revised (K-Leiter-R). Seoul: Hakjisa. Shin, M. S., & Cho, S. C. (2010). The Korean Leiter International Performance Scale—Revised (K-Leiter-R). Seoul: Hakjisa.
go back to reference Shukla, D. K., Keehn, B., Lincoln, A. J., & Muller, R. A. (2010). White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: A diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry, 49(12), 1269–1278, 1278 e1261–1262. https://doi.org/10.1016/j.jaac.2010.08.018 Shukla, D. K., Keehn, B., Lincoln, A. J., & Muller, R. A. (2010). White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: A diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry, 49(12), 1269–1278, 1278 e1261–1262. https://​doi.​org/​10.​1016/​j.​jaac.​2010.​08.​018
go back to reference Turner, L. M., Stone, W. L., Pozdol, S. L., & Coonrod, E. E. (2006). Follow-up of children with autism spectrum disorders from age 2 to age 9. Autism, 10(3), 243–265.CrossRef Turner, L. M., Stone, W. L., Pozdol, S. L., & Coonrod, E. E. (2006). Follow-up of children with autism spectrum disorders from age 2 to age 9. Autism, 10(3), 243–265.CrossRef
go back to reference Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978CrossRef Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. https://​doi.​org/​10.​1006/​nimg.​2001.​0978CrossRef
go back to reference Xiao, X., Fang, H., Wu, J., Xiao, C., Xiao, T., Qian, L., Liang, F., Xiao, Z., Chu, K. K., & Ke, X. (2017). Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder. Autism Research, 10(4), 620–630. https://doi.org/10.1002/aur.1711CrossRef Xiao, X., Fang, H., Wu, J., Xiao, C., Xiao, T., Qian, L., Liang, F., Xiao, Z., Chu, K. K., & Ke, X. (2017). Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder. Autism Research, 10(4), 620–630. https://​doi.​org/​10.​1002/​aur.​1711CrossRef
Metagegevens
Titel
Classification of Preschoolers with Low-Functioning Autism Spectrum Disorder Using Multimodal MRI Data
Auteurs
Johanna Inhyang Kim
Sungkyu Bang
Jin-Ju Yang
Heejin Kwon
Soomin Jang
Sungwon Roh
Seok Hyeon Kim
Mi Jung Kim
Hyun Ju Lee
Jong-Min Lee
Bung-Nyun Kim
Publicatiedatum
04-01-2022
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 1/2023
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-021-05368-z