Skip to main content
Top
Gepubliceerd in:

13-09-2022 | Original Article

Characterization and Classification of ADHD Subtypes: An Approach Based on the Nodal Distribution of Eigenvector Centrality and Classification Tree Model

Auteurs: Papri Saha, Debasish Sarkar

Gepubliceerd in: Child Psychiatry & Human Development | Uitgave 3/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

In recent times, the complex network theory is increasingly applied to characterize, classify, and diagnose a broad spectrum of neuropathological conditions, including attention deficit hyperactivity disorder (ADHD), Alzheimer’s disease, bipolar disorder, and many others. Nevertheless, the diagnosis and associated subtype identification majorly rely on the baseline correlation matrix obtained from the functional MRI scan. Thus, the existing protocols are either full of personalized bias or computationally expensive as network complexity-based simple but deterministic protocols are yet to be developed and formalized. This article proposes a deterministic method to identify and differentiate the common ADHD subtypes, which is based on a single complexity measure, namely the eigenvector centrality. The node-wise centrality differences were explored using a classification tree model (p < 0.05) to diagnose the subtypes. Identification of marker nodes from default mode, visual, frontoparietal, limbic, and cerebellar networks strongly vouch for the involvement of multiple brain regions in ADHD neuropathology.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
go back to reference Griffiths K, Grieve S, Kohn M et al (2016) Altered gray matter organization in children and adolescents with ADHD: a structural covariance connectome study. Transl Psychiatry 6:e947PubMedPubMedCentralCrossRef Griffiths K, Grieve S, Kohn M et al (2016) Altered gray matter organization in children and adolescents with ADHD: a structural covariance connectome study. Transl Psychiatry 6:e947PubMedPubMedCentralCrossRef
2.
go back to reference Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948PubMedCrossRef Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948PubMedCrossRef
3.
go back to reference Castellanos FX, Proal E (2012) E “Large-scale brain systems in ADHD: beyond the prefrontal-striatal model.” Trends Cogn Sci 16:17–26PubMedCrossRef Castellanos FX, Proal E (2012) E “Large-scale brain systems in ADHD: beyond the prefrontal-striatal model.” Trends Cogn Sci 16:17–26PubMedCrossRef
4.
go back to reference Goodman DW, Mitchell S, Rhodewalt L, Surman CBH (2016) Clinical presentation, diagnosis and treatment of attention-deficit hyperactivity disorder (ADHD) in older adults: a review of the evidence and its implications for clinical care. Drugs Aging 33:27–36PubMedCrossRef Goodman DW, Mitchell S, Rhodewalt L, Surman CBH (2016) Clinical presentation, diagnosis and treatment of attention-deficit hyperactivity disorder (ADHD) in older adults: a review of the evidence and its implications for clinical care. Drugs Aging 33:27–36PubMedCrossRef
5.
go back to reference Gualtieri CT, Johnson LG (2005) ADHD: is objective diagnosis possible? Psychiatry (Edgmont) 2:44–53PubMed Gualtieri CT, Johnson LG (2005) ADHD: is objective diagnosis possible? Psychiatry (Edgmont) 2:44–53PubMed
6.
go back to reference Goldman LS, Genel M, Bezman RJ, Slanetz PJ (1998) Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. JAMA 279:1100–1107PubMedCrossRef Goldman LS, Genel M, Bezman RJ, Slanetz PJ (1998) Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. JAMA 279:1100–1107PubMedCrossRef
7.
go back to reference Costa Dias TG, Iyer SP, Carpenter SD, Cary RP, Wilson VB, Mitchell SH et al (2015) Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Dev Cogn Neurosci 11:155–174PubMedPubMedCentralCrossRef Costa Dias TG, Iyer SP, Carpenter SD, Cary RP, Wilson VB, Mitchell SH et al (2015) Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Dev Cogn Neurosci 11:155–174PubMedPubMedCentralCrossRef
8.
go back to reference Mills BD, Miran-Dominguez O, Mills KL, Earl E, Cordova M, Painter J et al (2018) ADHD and attentional control: impaired segregation of task positive and task negative brain networks. Netw Neurosci 2:200–217PubMedPubMedCentralCrossRef Mills BD, Miran-Dominguez O, Mills KL, Earl E, Cordova M, Painter J et al (2018) ADHD and attentional control: impaired segregation of task positive and task negative brain networks. Netw Neurosci 2:200–217PubMedPubMedCentralCrossRef
9.
go back to reference Tian L, Jiang T, Liang M, Zang Y, He Y, Sui M et al (2008) Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain Dev 30:342–348PubMedCrossRef Tian L, Jiang T, Liang M, Zang Y, He Y, Sui M et al (2008) Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain Dev 30:342–348PubMedCrossRef
10.
go back to reference Sutcubasi B, Metin B, Kurban MK, Metin ZE, Beser B, Sonuga-Barke E (2020) Resting-state network dysconnectivity in ADHD: a system-neuroscience-based meta-analysis. World J Biol Psychiatry 21:662–672PubMedCrossRef Sutcubasi B, Metin B, Kurban MK, Metin ZE, Beser B, Sonuga-Barke E (2020) Resting-state network dysconnectivity in ADHD: a system-neuroscience-based meta-analysis. World J Biol Psychiatry 21:662–672PubMedCrossRef
11.
go back to reference Stevens SE, Sonuga-Barke EJS, Kreppner JM, Beckett C, Castle J, Colvert E et al (2008) Inattention/overactivity following early severe institutional deprivation: presentation and associations in early adolescence. J Abnorm Child Psychol 36:385–398PubMedCrossRef Stevens SE, Sonuga-Barke EJS, Kreppner JM, Beckett C, Castle J, Colvert E et al (2008) Inattention/overactivity following early severe institutional deprivation: presentation and associations in early adolescence. J Abnorm Child Psychol 36:385–398PubMedCrossRef
12.
go back to reference Fair DA, Bathula D, Nikolas MA, Nigg JT (2012) Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. PNAS 109:6769–6774PubMedPubMedCentralCrossRef Fair DA, Bathula D, Nikolas MA, Nigg JT (2012) Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. PNAS 109:6769–6774PubMedPubMedCentralCrossRef
13.
go back to reference Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE 3:e0002051PubMedCrossRef Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE 3:e0002051PubMedCrossRef
14.
go back to reference Cao M, Shu N, Cao Q, Wang Y, He Y (2014) Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol Neurobiol 50:1111–1123PubMedCrossRef Cao M, Shu N, Cao Q, Wang Y, He Y (2014) Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol Neurobiol 50:1111–1123PubMedCrossRef
15.
go back to reference Saad JF, Griffiths KR, Kohn MR, Clarke S, Williams LM, Korgaonkar MS (2017) Regional brain network organization distinguishes the combined and inattentive subtypes of attention deficit hyperactivity disorder. Neuroimage Clin 15:383–390PubMedPubMedCentralCrossRef Saad JF, Griffiths KR, Kohn MR, Clarke S, Williams LM, Korgaonkar MS (2017) Regional brain network organization distinguishes the combined and inattentive subtypes of attention deficit hyperactivity disorder. Neuroimage Clin 15:383–390PubMedPubMedCentralCrossRef
16.
go back to reference Guimerà R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. PNAS 102:7794–7799PubMedPubMedCentralCrossRef Guimerà R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. PNAS 102:7794–7799PubMedPubMedCentralCrossRef
17.
go back to reference Costa LF et al (2011) Analyzing and modelling real-world phenomena with complex networks: a survey of applications. Adv Phys 60:329–412CrossRef Costa LF et al (2011) Analyzing and modelling real-world phenomena with complex networks: a survey of applications. Adv Phys 60:329–412CrossRef
18.
go back to reference Oldham S, Fulcher B, Parkes L, Arnatkevic̆iūtė A, Suo C, Fornito A (2019) Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE 14:e0220061PubMedPubMedCentralCrossRef Oldham S, Fulcher B, Parkes L, Arnatkevic̆iūtė A, Suo C, Fornito A (2019) Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE 14:e0220061PubMedPubMedCentralCrossRef
19.
go back to reference Langville AN, Meyer CD (2006) Google’s PageRank and Beyond: The Science of Search Engine Rankings”. Princeton University Press, PrincetonCrossRef Langville AN, Meyer CD (2006) Google’s PageRank and Beyond: The Science of Search Engine Rankings”. Princeton University Press, PrincetonCrossRef
20.
go back to reference Bonacich P (2007) Some unique properties of eigenvector centrality. Social Networks 29:555–564CrossRef Bonacich P (2007) Some unique properties of eigenvector centrality. Social Networks 29:555–564CrossRef
21.
22.
go back to reference Binnewijzend MAA et al (2014) Brain network alterations in Alzheimer’s disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum Brain Mapp 35:2383–2393PubMedCrossRef Binnewijzend MAA et al (2014) Brain network alterations in Alzheimer’s disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum Brain Mapp 35:2383–2393PubMedCrossRef
23.
go back to reference Eijlers AJC et al (2017) Increased default-mode network centrality in cognitively impaired multiple sclerosis patients. Neurology 88:952–960PubMedCrossRef Eijlers AJC et al (2017) Increased default-mode network centrality in cognitively impaired multiple sclerosis patients. Neurology 88:952–960PubMedCrossRef
24.
go back to reference Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and Regression Trees, 1st edn. Chapman and Hall, CRC Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and Regression Trees, 1st edn. Chapman and Hall, CRC
25.
go back to reference Findley S (2003) Age limits and adolescents. Paediatr Child Health 8:577–578CrossRef Findley S (2003) Age limits and adolescents. Paediatr Child Health 8:577–578CrossRef
26.
go back to reference Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Neuroscience 10:186–198PubMed Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Neuroscience 10:186–198PubMed
27.
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069PubMedCrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069PubMedCrossRef
28.
go back to reference Craddock RC et al (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33:1914–1928PubMedCrossRef Craddock RC et al (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33:1914–1928PubMedCrossRef
29.
30.
go back to reference Frobenius G (1912) Uber matrizen aus nicht negativen elementen. S-B Preuss Acad Wiss, Berlin Frobenius G (1912) Uber matrizen aus nicht negativen elementen. S-B Preuss Acad Wiss, Berlin
31.
go back to reference Fletcher JMK, Wennekers T (2017) From structure to activity: using centrality measures to predict neuronal activity. Int J Neural Syst 28:1750013CrossRef Fletcher JMK, Wennekers T (2017) From structure to activity: using centrality measures to predict neuronal activity. Int J Neural Syst 28:1750013CrossRef
32.
go back to reference Colbourn CJ, Kreher DL (1996) “Concerning Difference Matrices. In: Tonchev V (ed) Codes Designs and Geometry”. Springer, Boston Colbourn CJ, Kreher DL (1996) “Concerning Difference Matrices. In: Tonchev V (ed) Codes Designs and Geometry”. Springer, Boston
33.
go back to reference Raileanu LE, Stoffel K (2004) Theoretical comparison between the gini index and information gain criteria. Ann Math Artif Intell 41:77–93CrossRef Raileanu LE, Stoffel K (2004) Theoretical comparison between the gini index and information gain criteria. Ann Math Artif Intell 41:77–93CrossRef
34.
go back to reference Richiardi H et al (2010) Brain decoding of fMRI connectivity graphs using decision tree ensembles. IEEE Int Symp Biomed Imaging: from Nano Macro 2010:1137–1140 Richiardi H et al (2010) Brain decoding of fMRI connectivity graphs using decision tree ensembles. IEEE Int Symp Biomed Imaging: from Nano Macro 2010:1137–1140
35.
go back to reference Sadria M, Karimi S, Layton AT (2019) Network centrality analysis of eye-gaze data in autism spectrum disorder. Comput Biol Med 111(7):103332PubMedCrossRef Sadria M, Karimi S, Layton AT (2019) Network centrality analysis of eye-gaze data in autism spectrum disorder. Comput Biol Med 111(7):103332PubMedCrossRef
36.
go back to reference Nakai Y, Nishibayashi H, Donishi T et al (2021) Regional abnormality of functional connectivity is associated with clinical manifestations in individuals with intractable focal epilepsy. Sci Rep 11:1545PubMedPubMedCentralCrossRef Nakai Y, Nishibayashi H, Donishi T et al (2021) Regional abnormality of functional connectivity is associated with clinical manifestations in individuals with intractable focal epilepsy. Sci Rep 11:1545PubMedPubMedCentralCrossRef
37.
go back to reference Duinkerken E et al (2017) Altered eigenvector centrality is related to local resting-state network functional connectivity in patients with longstanding type 1 diabetes mellitus. Hum Brain Mapp 38:3623–3636PubMedPubMedCentralCrossRef Duinkerken E et al (2017) Altered eigenvector centrality is related to local resting-state network functional connectivity in patients with longstanding type 1 diabetes mellitus. Hum Brain Mapp 38:3623–3636PubMedPubMedCentralCrossRef
38.
39.
go back to reference Yu-Feng Z et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Develop 29:83–91CrossRef Yu-Feng Z et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Develop 29:83–91CrossRef
40.
go back to reference Gong G, He Y, Evans AC (2011) Brain connectivity: gender makes a difference. Neuroscientist 17:575–591PubMedCrossRef Gong G, He Y, Evans AC (2011) Brain connectivity: gender makes a difference. Neuroscientist 17:575–591PubMedCrossRef
41.
go back to reference Filippi M (2013) The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Map 34:1330–1343CrossRef Filippi M (2013) The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Map 34:1330–1343CrossRef
42.
go back to reference Smith DV et al (2014) Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches. Neuroimage 95:1–12PubMedCrossRef Smith DV et al (2014) Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches. Neuroimage 95:1–12PubMedCrossRef
Metagegevens
Titel
Characterization and Classification of ADHD Subtypes: An Approach Based on the Nodal Distribution of Eigenvector Centrality and Classification Tree Model
Auteurs
Papri Saha
Debasish Sarkar
Publicatiedatum
13-09-2022
Uitgeverij
Springer US
Gepubliceerd in
Child Psychiatry & Human Development / Uitgave 3/2024
Print ISSN: 0009-398X
Elektronisch ISSN: 1573-3327
DOI
https://doi.org/10.1007/s10578-022-01432-6