Skip to main content

The Roles of Norepinephrine and Serotonin in Attention Deficit Hyperactivity Disorder

  • Chapter
Attention Deficit Hyperactivity Disorder

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Norepinephrine (NE) belongs to the chemical group of the catecholamines and is also known outside the Americas as noradrenaline. Serotonin, an indoleamine, is better described chemically as 5-hydroxytryptamine (5-HT). Together with the catecholamines dopamine (DA) and epinephrine (adrenaline), they are known as the “monoamines.” These monoamines have an agent role in transmission between neurons—often in the synapse between neurons and their elements in apposition, sometimes between release and receptor sites that are further apart. Then the role is more reminiscent of hormonal communication. Both roles are subsumed as neuro-transmission. These transmitters are located in well-characterized, similar neural pathways throughout the vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moleman P, Tulen JHM, Blankestijn PJ, Man in t’Veld A, Boomsma F. Urinary excretion of catecholamines and their metabolites in relation to circulating catecholamines: siz-hour infusion of epinephrine and norepinephrine in healthy volunteers. Arch Gen Psychiat 1992;49:568–572.

    PubMed  CAS  Google Scholar 

  2. Carlsson A, Falck B, Hillarp NA. Cellular localization of brain monoamines. Acta Physiol Scand 1962;56(Suppl 1):1–28.

    CAS  Google Scholar 

  3. Vogt M. The concentration of sympathin in different parts of the central nervous system under normal conditions and after administration of drugs. J Physiol (London) 1954;123:451–481.

    CAS  Google Scholar 

  4. Anderson CD, Pasquier DA, Forbes WB, Morgane PJ. Locus coeruleus-to-dorsal raphe input examined by electrophysiological and morphological methods. Brain Res Bull 1977;2:209–221.

    PubMed  CAS  Google Scholar 

  5. Jones BE, Moore RY. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 1977;127:23–53.

    Google Scholar 

  6. Loughlin SE, Foote SL, Bloom FE. Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neurosci 1986;18:291–306.

    CAS  Google Scholar 

  7. Delfs JM, Zhu JP, Druhan JP, Aston-Jones GS. Origin of noradrenergic afferents to the shell sub-region of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 1998;806:127–140.

    PubMed  CAS  Google Scholar 

  8. Chan-Palay V, Asan E. Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J Comp Neurol 1989;287:357–372.

    PubMed  CAS  Google Scholar 

  9. Descarries L, Watkins KC, Lapierre Y. Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis. Brain Res 1977;133:197–222.

    PubMed  CAS  Google Scholar 

  10. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 2003;42:33–84.

    PubMed  Google Scholar 

  11. Amin AH, Crawford TBB, Gaddum JH. The distribution of substance P and 5-hydroxy-tryptamine in the central nervous system of the dog. J Physiol 1954;126:596–618.

    PubMed  CAS  Google Scholar 

  12. Twarog BM, Page ICH. Serotonin content of some mammalian tissues and urine and method for its determination. Am J Physiol 1953;175:479–485.

    Google Scholar 

  13. Dahlström A, Fuxe K. Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in cell bodies of brain neurons. Acta Physiol Scand 1964;62(Suppl 232):1–55.

    Google Scholar 

  14. Steinbusch HWM. Distribution of serotonin-immunoreactivity in the central nervous system of the rat: cell bodies and terminals. Neurosci 1981;6:557–618.

    CAS  Google Scholar 

  15. Kosofsky BE, Molliver ME. The serotonergic innervation of the cerebral cortex: different classes of axon terminals arise from the dorsal and median raphe nuclei. Synapse 1987;1:153–168.

    PubMed  CAS  Google Scholar 

  16. Törk I. Anatomy of the serotonergic system. Ann NY Acad Sci 1990;600:9–34.

    PubMed  Google Scholar 

  17. Hornung J-P, Fritschy J-M, Törk I. Distribution of subsets of serotoninergic axons in the cerebral cortex of the marmoset. J Comp Neurol 1990;297:165–181.

    PubMed  CAS  Google Scholar 

  18. Molliver ME. Serotonergic neuronal systems: what their anatomic organization tells us about function. J Clin Psychopharmacol 1987;7:3S–23S.

    PubMed  CAS  Google Scholar 

  19. De Haes JI, Bosker FJ, Van Waarde A, et al. 5-HT1A receptor imaging in the human brain: effect of tryptophan depletion and infusion on [18F]MPPF binding. Synapse 2002;46:108–115.

    Google Scholar 

  20. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L. Comparative localization of serotonin1A,1C and 2receptor subtype mRNAs in rat brain. J Comp Neurol 1995;351:357–373.

    PubMed  CAS  Google Scholar 

  21. Nosjean A, Hamon M, Darmon M. 5-HT2A receptors are expressed by catecholaminergic neurons in the rat nucleus tractus solitarii. Neuro Report 2003;13:2365–2369.

    Google Scholar 

  22. Bortolozzi A, Artigas F. Control of 5-hydroxytryptamine release in the dorsal raphe nucleus by the noradrenergic system in rat brain. Role of alpha-adrenoceptors. Neuropsychopharmacol 2003;28:421–434.

    CAS  Google Scholar 

  23. Pudovkina OL, Cremers TI, Westerink BHC. The interaction between the locus coeruleus and dorsal raphe nucleus studied with dual-probe microdialysis. Eur J Pharmacol 2002;445:37–42.

    PubMed  CAS  Google Scholar 

  24. Birthelmer A, Ehret A, Amtage F, et al. Neurotransmitter release and its presynaptic modulation in the rat hippocampus after selective damage to cholinergic or/and serotonergic afferents. Brain Res Bull 2002;59:371–381.

    Google Scholar 

  25. Szabo ST, Blier P. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons. J Pharmacol Exp Ther 2002;302:983–991.

    PubMed  CAS  Google Scholar 

  26. Ruiz-Ortega JA, Ugedo L. Activation of 5-HT1A receptors potentiates the clonidine inhibitory effect in the locus coeruleus. Eur J Pharmacol 1997;333:159–162.

    PubMed  CAS  Google Scholar 

  27. Gobert A, Rivet J-M, Audinot V, Newman-Tancredi A, Cistarelli L, Millan MJ. Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto-and heteroceptor-mediated control of release. Neurosci 1998;84:413–429.

    CAS  Google Scholar 

  28. Gobert A, Millan MJ. Serotonin 5-HT 2a receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacol 1999;38:315–318.

    CAS  Google Scholar 

  29. Millan MJ, Dekeyne A, Gobert A. Serotonin (5HT2c) receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacol 1998;37:953–955.

    CAS  Google Scholar 

  30. Geracioti TD, Keck PE, Ekhator NN, et al. Continuous covariability of dopamine and serotonin metabolites in human cerebrospinal fluid. Biol Psychiat 1998;44:228–233.

    PubMed  CAS  Google Scholar 

  31. Castellanos FX, Elia J, Kruesi MJP, et al. Cerebrospinal fluid homovanillic acid predicts behavioral response to stimulants in 45 boys with attention deficit/hyperactivity disorder. Neuropsychopharmacol 1996;14:125–137.

    CAS  Google Scholar 

  32. O’Neill MF, Heron-Maxwell CL, Shaw G. 5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine and MK-801 but not D-1 agonist c-APB. Pharmacol Biochem Behav 1999;63:237–244.

    PubMed  CAS  Google Scholar 

  33. Porras G, Di Matteo V, Fracasso C, et al. 5-HT(2A) and 5-HT(2C/2B) receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacol 2002;26:311–324.

    CAS  Google Scholar 

  34. Rogers RD, Blackshaw AJ, Middleton HC, et al. Tryptophan depletion impairs stimulus reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacol 1999;146:482–491.

    CAS  Google Scholar 

  35. Fletcher PJ, Korth KM. Activation of 5-HT1B in the nucleus accumbens reduces amphetamine induced enhancement of responding for conditioned reward. Psychopharmacol 1999;142:165–174.

    CAS  Google Scholar 

  36. Luthman J, Fredeiksson A, Sundström E, Jonsson G, Archer T. Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 1989;33:267–277.

    PubMed  CAS  Google Scholar 

  37. Oades RD, Slusarek M, Velling S, Bondy B. Serotonin platelet-transporter measures in childhood attention-deficit/hyperactivity disorder (ADHD): clinical versus experimental measures of impulsivity. World J Biol Psychiat 2002;3:96–100.

    Google Scholar 

  38. Koskinen T, Sirviö J. Studies on the involvement of the dopaminergic system in the 5-HT2 agonist DOI-induced premature responding in a five-choice serial reaction time task. Brain Res Bull 2001;54:65–75.

    PubMed  CAS  Google Scholar 

  39. Nocjar C, Roth BL, Pehek EA Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 2002;111:163–176.

    PubMed  CAS  Google Scholar 

  40. Lucas G, Spampinato U. Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of the in vivo dopamine outfow in the rat striatum. J Neurochem 2000;74:693–701.

    PubMed  CAS  Google Scholar 

  41. Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E. Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin2c/2b receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 2000;35:53–61.

    PubMed  Google Scholar 

  42. Di Matteo V, Cacchio M, Di Giulio C, Esposito E. Role of serotonin (2C) receptors in the control of brain dopaminergic function. Pharmacol Biochem Behav 2002;71:727–734.

    PubMed  Google Scholar 

  43. Hutson PH, Barton CL, Jay M, et al. Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT2C/2B receptor antagonists: neurochemical and behavioural studies. Neuropharmacol 2000;39:2318–2328.

    CAS  Google Scholar 

  44. Kuroki T, Dai J, Meltzer HY, Ichikawa J. R(+)-8-OH-DPAT, a selective 5-HT1A receptor agonist, attenuated amphetamine-induced dopamine synthesis in rat striatum, but not nucleus accumbens or medial prefrontal cortex. Brain Res 2000;872:204–207.

    PubMed  CAS  Google Scholar 

  45. Doherty MD, Pickel VM. Targeting of serotonin 1a receptors to dopaminergic neurons within the parabrachial subdivision of the ventral tegmental area in rat brain. J Comp Neurol 2001;433:490–500.

    Google Scholar 

  46. Yan QS, Yan SE. Activation of 5.HT1B/(1D) receptors in the mesolimbic dopamine system: increases dopamine release from the nucleus acumbens. Eur J Pharmacol 2001;418:55–64.

    PubMed  CAS  Google Scholar 

  47. Pan WHT, Sung JC, Fuh SMR. Locally application of amphetamine into the ventral tegmental area enhances dopamine release in the nucleus accumbens and the medial prefrontal cortex through noradrenergic neurotransmission. J Pharmacol Exp Ther 1996;278:725–731.

    PubMed  CAS  Google Scholar 

  48. Auclair A, Cotecchia S, Glowinski J, Tassin J-P. D-amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release. J Neurosci 2002;22:9150–9154.

    PubMed  CAS  Google Scholar 

  49. Yavich L, Lappalainen R, Sirviö J, Haapalinna A, MacDonald E. α2-Adrenergic control of dopamine overflow and metabolism in mouse striatum. Eur J Pharmacol 1997;339:113–119.

    PubMed  CAS  Google Scholar 

  50. Tuinstra T, Cools AR. High and low responders to novelty: effects of adrenergic agents on the regulation of accumbal dopamine under challenged and non-challenged conditions. Neurosci 2000;99:55–64.

    CAS  Google Scholar 

  51. Gioanni Y, Thierry A-M, Glowinski J, Tassin J-P. α1-Adrenergic, D1 and D2 receptors interactions in the prefrontal cortex: implications for the modality of action of different types of neuroleptics. Synapse 1998;30:362–370.

    PubMed  CAS  Google Scholar 

  52. Hertel P, Fagerquist MV, Svensson TH. Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by α2 adrenoceptor blockade. Science 1999;286:105–107.

    PubMed  CAS  Google Scholar 

  53. Carboni E, Tanda GL, Frau R, Di Chiara G. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 1990;55:1067–1070.

    PubMed  CAS  Google Scholar 

  54. De Montis G, Devoto P, Gessa GL, et al. Central dopaminergic transmission is selectively increased in the limbic system of rats chronically exposed to antidepressants. Eur J Pharmacol 1990;180:31–35.

    PubMed  Google Scholar 

  55. Wayment HK, Schenk JO, Sorg BA. Characterization of extracellular dopamine clearance in the medial prefrontal cortex: role of monoamine uptake and monoamine oxidase inhibition. J Neurosci 2001;21:35–44.

    PubMed  CAS  Google Scholar 

  56. Devoto P, Flore G, Pani L, Gessa GL. Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol Psychiatr 2001;6:657–664.

    CAS  Google Scholar 

  57. Zevcevic N, Verney C. Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J Comp Neurol 1995;351:509–535.

    Google Scholar 

  58. Tomasini R, Kema IP, Muskiet FAJ, Neiborg G, Staal MJ, Go KG. Catecholaminergic development of fetal ventral mesencephalon: characterization by high performance liquid chrmatography with electrochemical detection and immunohistochemistry. Exp Neurol 1997;145:434–441.

    PubMed  CAS  Google Scholar 

  59. Choi S-J, Kellogg CK. Adolescent development influences functional responsiveness of noradrenergic projections to the hypothalamus in male rats. Dev Brain Res 1996;94:144–151.

    CAS  Google Scholar 

  60. Clarke AS, Hedeker DR, Ebert MH, Schmidt DE, McKinney WT, Kraemer GW. Rearing experience and biogenic amine activity in infant rhesus monkeys. Biol Psychiat 1996;40:338–352.

    PubMed  CAS  Google Scholar 

  61. Miguez JM, Aldegrunde M, Paz-Valinas L, Recio J, Sanchez-Barcelo E. Selective changes in the contents of noradrenaline, dopamine and serotonin in rat brain areas during aging. J Neur Transm 2000;106:1089–1098.

    Google Scholar 

  62. Hartley EJ, Seeman P. Development of receptors for dopamine and noradrenaline in rat brain. Eur J Pharmacol 1983;91:391–397.

    PubMed  CAS  Google Scholar 

  63. Moll GH, Mehnert C, Wicker M, et al. Age-associated changes in the densities of the presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Dev Brain Res 2000;119:251–257.

    CAS  Google Scholar 

  64. Roux JC, Mamet J, Perrin J, et al. Neurochemical development of the brainstem catecholaminergic cell groups in rat. J Neur Transm 2003;110:51–65.

    CAS  Google Scholar 

  65. Oades RD, Roepcke B, Schepker R. A test of conditioned blocking and its development in childhood and adolescence: relationship to personality and monoamine metabolism. Dev Neuropsychol 1996;12:207–230.

    Google Scholar 

  66. Andersen SL, Teicher MH. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 2000;24:137–141.

    PubMed  CAS  Google Scholar 

  67. Vu DH, Törk I. Differential development of the dual serotonergic fiber system in the cerebral cortex of the cat. J Comp Neurol 1992;317:156–174.

    PubMed  CAS  Google Scholar 

  68. Jones GH, Hernandez TD, Kendall DA, Marsden CA, Robbins TW. Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 1992;43:17–35.

    PubMed  CAS  Google Scholar 

  69. Santana C, Rodriguez M, Alfonso D, Arevalo R. Dopaminergic neuron development in rats: biochemical study from prenatal life to adulthood. Brain Res Bull 1992;29:7–13.

    PubMed  CAS  Google Scholar 

  70. Silverstein FS, Donn S, Buchanan K, Johnston MV. Concentrations of homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid from human infnats in the perinatal period. J Neurochem 1984;43:1769–1772.

    PubMed  CAS  Google Scholar 

  71. Murrin LC, Gibbens DL, Ferrer JR. Ontogeny of dopamine, serotonin and spirodecanone receptors in rat forebrain—an autoradiographic study. Develop Brain Res 1985;23:91–109.

    CAS  Google Scholar 

  72. Konradi C, Kornhuber J, Sofic E, Heckers S, Riederer P, Beckmann H. Variations of monoamines and their metabolites in the human brain putamen. Brain Res 1992;579:285–290.

    PubMed  CAS  Google Scholar 

  73. Retz W, Kornhuber J, Riederer P. Neurotransmission and the ontogeny of human brain. J Neur Transm 1996;103:403–419.

    CAS  Google Scholar 

  74. Sigurdh J, Spigset O, Allard P, Mjörndahl T, Hägglof B. Binding of [3H]lysergic acid diethylamide to serotonin 5-HT2A receptors and of [3H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults. Neuropsychobiol 1999;40:183–187.

    CAS  Google Scholar 

  75. Zhang ZW. Serotonin induces tonic firing in layer V pyramidal neurons of rat prefrontal cortex during postnatal development. J Neurosci 2003;23:3373–3384.

    PubMed  CAS  Google Scholar 

  76. Rodriguez M, Martin L, Santana C. Ontogenic development of brain asymmatry in dopaminergic neurons. Brain Res Bull 1994;33:163–171.

    PubMed  CAS  Google Scholar 

  77. Hechtman L. Genetic and neurobiological aspects of attention deficit hyperactive disorder: a review. J Psychiatr Neurosci 1994;19:193–201.

    CAS  Google Scholar 

  78. Arnsten AFT. Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 1997;1:151–162.

    Google Scholar 

  79. Flugge G, van Kampen M, Meyer H, Fuchs E, Alpha2A and alpha2C-adrenoceptor regulation in the brain: alpha2A changes persist after chronic stress. Eur J Neurosci 2003;17:917–928.

    PubMed  CAS  Google Scholar 

  80. Linner L, Arborelius L, Nomikos GG, Bertilsson L, Svensson TH. Locus coeruleus neuronal activity and noradrenaline availability in the frontal cortex of rats chronically treated with imipramine: effect of α2-adrenoceptor blockade. Biol Psychiat 1999;46:776–774.

    Google Scholar 

  81. Fahlke C, Garpenstrand H, Oreland L, Suomi SJ, Higley JD. Platelet monoamine oxidase activity in nonhuman primate model of type 2 excessive alcoholconsumption. Am J Psychiat 2002;159:2107–2109.

    PubMed  Google Scholar 

  82. Comings DE, Gonzalez NS, Cheng LS-C, MacMurray J. A “line-item” approach to the identification of genes involved in polygenic behavioral disorders: the adrenergic α2A (ADRA2A) gene. Am J Med Genet 2003;118B:110–114.

    Google Scholar 

  83. Barr CL, Kroft J, Feng Y, et al. The norepinephrine transporter gene and attention deficit hyper-activity disorder. Am J Genet 2002;114:255–259.

    Google Scholar 

  84. McEvoy B, Hawi Z, Fitzgerald M, Gill M. No evidence of linkage or association between norepinephrine transporter (NET) gene polymorphisms and ADHD in the Irish population. Am J Med Genet 2002;114:656–666.

    Google Scholar 

  85. Qian Q, Wang Y, Zhou R, et al. Family based and case control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. Am J Med Genet 2003;118B:103–109.

    Google Scholar 

  86. Eisenberg J, Mei-Tal G, Steinberg A, et al. Haplotype relative risk study of catechol-O-methyl-transferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive-hyperactive phenotype. Am J Med Genet 1999;88:497–502.

    PubMed  CAS  Google Scholar 

  87. Kirley A, Hawi Z, Daly G, et al. Dopaminergic system genes in ADHD: toward a biological hypothesis. Neuropsychopharmacol 2002;27:607–619.

    CAS  Google Scholar 

  88. Wigg K, Zai G, Schachar R, Tannock R, et al. Attention defict hyperactivity disorder and the gene for dopamine beta hydroxylase. Am J Psychiat 2002;159:1046–1048.

    PubMed  Google Scholar 

  89. Lawson DC, Turie D, Langley K, et al. Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. J Med Genet 2003;116B:84–89.

    Google Scholar 

  90. Garpenstrand H, Ekblom J, Hallman J, Oreland L. Platelet monoamine oxidase activity in relation to alleles of dopamine D4 and tyrosine hydroxylase genes. Acta Psychiat Scand 1997;96:295–300.

    PubMed  CAS  Google Scholar 

  91. Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW. Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacol 2002;26:716–728.

    CAS  Google Scholar 

  92. Moresco FM, Dieci M, Vita A. In vivo serotonin 5HT(2A) receptor binding and personality traits in healthy subjects: a positron emission tomography study. NeuroImage 2002;17:1470–1478.

    PubMed  CAS  Google Scholar 

  93. Kent L, Doerry U, Hary E, et al. Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit hyperactivity disorder (ADHD): analysis and pooled analysis. Mol Psychiat 2002;7:908–912.

    CAS  Google Scholar 

  94. Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiat 1998;3:508–511.

    CAS  Google Scholar 

  95. Lakatos K, Nemoda Z, Birkas E, et al. Association of D4 dopamine receptors gene and serotonin transporter promoter polymorphisms with infants’ response to novelty. Mol Psychiat 2003;8:90–97.

    CAS  Google Scholar 

  96. Auerbach JG, Faroy M, Ebstein R. The association of the dopamine D4 receptor gene /DRD4) and the serotonin transporter promoter gene (5-HTTLPR) with temperament in 12-month-old infants. J Child Psychol Psychiat 2001;42:777–783.

    PubMed  CAS  Google Scholar 

  97. Zoroglu SS, Erdal ME, Alasehirli B, et al. Significance of the serotonin transporter gene 5-HTTLPR and variable number tandem repeat polymorphism in attention deficit hyperactivity disorder. Neuropsychobiology 2002;45:176–181.

    PubMed  CAS  Google Scholar 

  98. Hawi Z, Dring M, Kirley A, et al. Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential suscepptibility locus at the 5-HT1B receptor gene in 273 nuclear families from a multicentre sample. Mol Psychiat 2002;7:718–725.

    CAS  Google Scholar 

  99. Quist JF, Barr CL, Schachar R, et al. The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiat 2003;8:98–102.

    CAS  Google Scholar 

  100. Quist JF, Barr CL, Schachar R, et al. Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Mol Psychiat 2000;5:537–541.

    CAS  Google Scholar 

  101. Levitan RD, Masellis M, Basile VS, et al. Polymorphism of the serotonin-2A receptor gene (HTR2A) associated with childhood attention deficit hyperactivity sidorder (ADHD) in adult women with seasonal affective disorder. J Affect Disord 2002;71:229–233.

    PubMed  CAS  Google Scholar 

  102. Lambert GW, Horne M, Kalff V, et al. Central nervous noradrenergic and dopaminergic turnover in response to acute neuroleptic challenge. Life Sci 1995;56:1545–1555.

    PubMed  CAS  Google Scholar 

  103. Potter WZ, Manji HK. Are monoamine metabolites in cerebrospinal fluid worth measuring? Arch Gen Psychiat 1993;50:653–656.

    PubMed  CAS  Google Scholar 

  104. Plizka SR, Maas JW, Javors MA, Rogeness GA, Baker J. Urinary catecholamines in attention-deficit hyperactivity disorder with and without comorbid anxiety. J Am Acad Child Adolesc Psychiat 1994;33:1165–1173.

    Google Scholar 

  105. Tohgi H, Takahashi S, Abe T. The effect of age on concentrations of monoamines, amino acids and their related substances in the cerebrospinal fluid. J Neur Transm (PD section) 1993;5:215–226.

    CAS  Google Scholar 

  106. Müller N, Empl M, Riedel M, Schwarz M, Ackenheil M. Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors. Eur Arch Psychiat Clin Neurosci 1997;247:308–313.

    Google Scholar 

  107. Cheetham SC, Viggers JA, Slater NA, Heal DJ, Buckett WR. [3H] Paroxetine binding in rat frontal cortex strongly correlates with [3H] 5HT uptake: effect of administration of various antidepressant treatments. Neuropharmacol 1993;32:737–743.

    CAS  Google Scholar 

  108. Lambert GW, Cox HS, Horne M, et al. Direct determination of homovanilic acid release from the human brain, an indicator of central dopaminergic activity. Life Sci 1991;49:1061–1072.

    PubMed  CAS  Google Scholar 

  109. Lambert GW, Eisenhofer G, Jennings GL, Esler MD. Regional homovanillic acid production in humans. Life Sci 1993;53:63–75.

    PubMed  CAS  Google Scholar 

  110. Lambert GW, Ferrier C, Kaye DM, et al. Monoaminergic neuronal activoity in subcortical brain regions in essential hypertension. Blood Press 1994;3:55–66.

    PubMed  CAS  Google Scholar 

  111. Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ. Effects of norepinephrine and seotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in the rat. J Exp Pharmacol Ther 2002;301:1097–1102.

    CAS  Google Scholar 

  112. Bishop C, Kamdar DP, Walker PD. Intrastriatal serotonin 5-HT2 receptors mediate dopamine D1-inducd hyperlocomotion in 6-hydrosxydopamine-lesioned rats. Synapse 2003;50:164–170.

    PubMed  CAS  Google Scholar 

  113. Sagvolden T, Metzger MA, Schiorbeck HK, Rugland A-L, Spinnangr I, Sagvolden G. The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neur Biol 1992;58:103–112.

    CAS  Google Scholar 

  114. Rogers LJ, Sink MS, Hambley JW. Exploration, fear and maze learning in spontaneously hypertensive and normotensive rats. Behav Neur Biol 1988;49:222–233.

    CAS  Google Scholar 

  115. Lukaszewska I, Niewiadomska G. The difference in learning abilities between hypertensive (SHR) and Wistar normotensive rats are cue dependent. Neurobiol Learn Memory 1995;63:43–53.

    CAS  Google Scholar 

  116. Nakamura-Palacios EM, Caldas CK, Fiorini A, Chaga KN, Vasquez EC. Deficits of spatial learning and working memory in spontaneously hypertensive rats. Behav Brain Res 1996;74:217–221.

    PubMed  CAS  Google Scholar 

  117. Gattu M, Pauly JR, Boss KL, Summers JB, Buccafusco JJ. Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. Part I Brain Res 1997;771:89–103.

    CAS  Google Scholar 

  118. Sagvolden T, Pettersen MB, Larsen MC. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis. Physiol Behav 1993;54:1047–1055.

    PubMed  CAS  Google Scholar 

  119. Dev BR, Philip L. Extracellular catechol and indole turnover in the nucleus of the solitary tract of spontaneously hypertensive and Wistar-Kyoto normotensive rats in response to drug-induced changes in arterial blood pressure. Brain Res Bull 1996;40:111–116.

    PubMed  CAS  Google Scholar 

  120. Bagdy G, Szemeredi K, Listwak SJ, Keiser HR, Goldstein DS. Plasma catecholamine, renin activity and ACTH responses to the serotonin agonist DOI in juvenile spontaneously hypertensive rats. Life Sci 1993;53:1573–1582.

    PubMed  CAS  Google Scholar 

  121. Tsukamoto K, Sved AF, Ito S, Komatsu K, Kanmatsuse K. Enhanced serotonin-mediated responses in the nucleus tractus solitarius of spontaneously hypertensive rats. Brain Res 2000;863:1–8.

    PubMed  CAS  Google Scholar 

  122. Russell V, Allie S, Wiggins T. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 2001;117:69–74.

    Google Scholar 

  123. De Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JF. α2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder. Neurochem Res 1995;20:427–433.

    PubMed  Google Scholar 

  124. Togashi H, Matsumoto M, Yoshioka M, Hirokami M, Minami M, Saito H. Neurochemical profiles in cerebrospinal fluid of stroke-prone spontaneously hypertensive rats. Neurosci Lett 1994;166:117–120.

    PubMed  CAS  Google Scholar 

  125. Russell V. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 2002;130:191–196.

    PubMed  CAS  Google Scholar 

  126. Davids E, Zhang K, Tarazi FI, Baldessarini RJ. Animal models of attention-deficit hyperactivity disorder. Brain Res Rev 2003;42:1–21.

    PubMed  Google Scholar 

  127. Dekeyne A, Gobert A, Auclair A, Girardon S, Millan MJ. Differential modulation of efficiency in a food-rewarded a differential reinforcement of low rate 72-s schedule in rats by norepinephrine and serotonin reptake inhibitors. Psychopharmacol 2002;162:156–167.

    CAS  Google Scholar 

  128. Jones MD, Hess EJ. Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav 2003;75:209–216.

    PubMed  CAS  Google Scholar 

  129. Missler M, Zhang W, Rohlmann A, et al. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 2003;423:939–948.

    PubMed  CAS  Google Scholar 

  130. Dell’Anna ME, Luthman J, Lindqvust E, Olson L. Development of monoamine systems after neonatal anoxia in rats. Brain Res Bull 1993;32:159–170.

    PubMed  CAS  Google Scholar 

  131. Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P, Sirviö J. Behavioral and pharmacological studies on the validation of a new animal model of attention deficit hyperactivity disorder. Neurobiol Learn Memory 1996;66:198–211.

    CAS  Google Scholar 

  132. Poncet L, Denoroy L, Dalmaz Y, Pequignot JM, Jouvet M. Alteration in central and peripheral substance P and neuropetide Y like immunoreactivity after chronic hypoxia in the rat. Brain Res 1996;733:64–72.

    PubMed  CAS  Google Scholar 

  133. Oades RD, Daniels R, Rascher W. Plasma neuropeptide Y levels, monoamine metabolism, electrolyte excretion and drinking behavior in children with attention deficit hyperactivity disorder (ADHD). Psychiat Res 1998;80;177–186.

    CAS  Google Scholar 

  134. Dumont Y, Martel JC, Fournier A, St-Pierre S, Quirion R. Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissue. Prog Neurobiol 1992;38:125–167.

    PubMed  CAS  Google Scholar 

  135. Lehmann J. Neuropetide Y: an overview. Drug Dev Res 1990;19:329–351.

    CAS  Google Scholar 

  136. Castellanos FX. The psychobiology of attention-deficit/hyperactivity disorder. In: Quay HC, Cohen TP, eds. Handbook of sisruptive behavior disorders. New York: Kluwer Academic/Plenum Publishers, 1999:179–198.

    Google Scholar 

  137. Ernst M, Kimes AS, London ED, et al. Neural substrates of decision making in adults with attention deficit hyperactivity disorder. Am J Psychiat 2003;160:1061–1070.

    PubMed  Google Scholar 

  138. Rubia K, Smith AB, Brammer MJ, Taylor E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage 2003;20:351–358.

    PubMed  Google Scholar 

  139. Oades RD, Dittmann-Balcar A, Schepker R, Eggers C. Auditory event-related potentials and mismatch negativity in healthy children and those with attention-deficit-or Tourette-like symptoms. Biol Psychol 1996;43:163–185.

    PubMed  CAS  Google Scholar 

  140. Arnsten AFT. Dopaminergic and noradrenergic influences on cognitive functons mediated by prefrontal cortex. In: Solanto MV, Arsten AFT, Castellanos FY, eds. Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford: Oxford University Press, 2001:185–208.

    Google Scholar 

  141. Kalff AC, Hendriksen JGM, Kroes M, et al. Neurocognitive performance of 5-and 6-yr old children who met criteria for attention deficit/hyperactivity disorder at 18 months follow-up: results from a prospective population study. J Abnorm Child Psychol 2002;30:589–598.

    PubMed  Google Scholar 

  142. Stevens J, Quittner AL, Zuckerman JB, Moore S. Behavioral inhibition, self-regulation of motivation, and working memory in children with attention deficit hyperactivity disorder. Dev Neuropsychol 2002;21:117–139.

    PubMed  Google Scholar 

  143. Barnett R, Maruff P, Vance A, et al. Abnormal executive function in attention deficit hyperactivity disorder: the effect of stimulant medication and age on spatial working memory. Psychol Med 2001;31:1107–1115.

    PubMed  CAS  Google Scholar 

  144. Karetekin C, Asarnow RF. Working memory in childhood-onset schizophrenia and attention-deficit/hyperactivity disorder. Psychiat Res 1998;80:165–176.

    Google Scholar 

  145. Tripp G, Ryan J, Peace K. Neuropsychological functioning in children with DSM-IV combined type attention deficit hyperactivity disorder. Aust NZ J Psychiatr 2003;36:771–779.

    Google Scholar 

  146. Muir-Broaddus J, Rosenstein LD, Medina DE, Soderberg C. Neuropsychological test performance of children with ADHD relative to test norms and parent behavioral ratings. Arch Clin Neuropsychol 2002;17:671–689.

    PubMed  Google Scholar 

  147. Roodenrys S, Koloski N, Grainger J. Working memory function in attention deficit hyperactivity disordered and reading disabled children. Br J Dev Psychol 2001;19:325–337.

    Google Scholar 

  148. Oie M, Sundet K, Rund BR. Contrasts in memory functions between adolescents with schizophrenia or ADHD. Neuropsychologia 1999;37:1351–1358.

    PubMed  CAS  Google Scholar 

  149. Kuntsi J, Oosterlaan J, Stevenson J. Psychological mechanisms in hyperactivity; I. Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiat 2001;42:199–210.

    PubMed  CAS  Google Scholar 

  150. Barkley RA, Edwards G, Laneri M, Fletcher K. Executive functioning, temporal discounting and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiance disorder (ODD). J Abnorm Child Psychol 2001;29:541–556.

    PubMed  CAS  Google Scholar 

  151. Shallice T, Marzocchi GM, Coser S, Del Salvio M, Meuter RF, Rumiati RI. Executive function profile of children with attention deficit hyperactivity disorder. Dev Neuropsychol 2002;21:43–71.

    PubMed  Google Scholar 

  152. Siegel LS, Ryan EB. The development of working memory in normally achieving and subtypes of learning disabled children. Child Dev 1989;60:973–980.

    PubMed  CAS  Google Scholar 

  153. Sergeant JA, Geurts H, Oosterlaan J. How specific is a deficit of executive function for attention-deficit/hyperactivity disorder? Behav Brain Res 2002;130:3–28.

    PubMed  Google Scholar 

  154. Sonuga-Barke EJS, Dalen L, Daley D, Remington B. Are planning, working memory, and inhibition associated with individual differences in preschool ADHD symptoms? Dev Neuropsychol 2002;21:255–272.

    PubMed  Google Scholar 

  155. Welsh MC, Satterlee-Cartnell T, Stine M. Towers of Hanoi and London: contribution of working memory and inhibition to performance Brain Cogn 1999;41:231–242.

    CAS  Google Scholar 

  156. Oades RD. The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci Biobehav Rev 1985;9:261–283.

    PubMed  CAS  Google Scholar 

  157. Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones GS. The role of the locus coeruleus in the regulation of cognitive performance. Science 1999;283:549–554.

    PubMed  CAS  Google Scholar 

  158. Chappell PB, Riddle MA, Scahill L, et al. Guanfacine treatment of comorbid attention-deficit hyperactivity disorder and Tourette’s syndrome: preliminary clinical experience. J Am Acad Child Adolesc Psychiatry 1995;34:1140–1146.

    PubMed  CAS  Google Scholar 

  159. Castellanos FX, Elia J, Kruesi MJP, et al. Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatr Res 1994;52:305–316.

    CAS  Google Scholar 

  160. Halperin JM, Newcorn JH, Koda VH, Pick L, McKay K.E, Knott P. Noradrenergic mechanisms in ADHD children with and without reading disabilities: a replication and extension. J Am Acad Child Adolesc Psychiatry 1997;36:1688–1697.

    PubMed  CAS  Google Scholar 

  161. Oades RD. Differential measures of’ sustained attention’ in children with attention-deficit/hyperactivity or tic disorders: relations to monoamine metabolism. Psychiatr Res 2000;93:165–178.

    CAS  Google Scholar 

  162. Spivak B, Vered Y, Yoran-Hegesh R, Averbuch E, Mester R, Graf E. Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity disorder. Acta Psychiatr Scand 1999;99:300–304.

    PubMed  CAS  Google Scholar 

  163. Uzbekov MG, Misionzhnik EY. Changes in urinary monoamine excretion in hyperkinetic children. Hum Psychopharmacol 2003;18:493–497.

    PubMed  CAS  Google Scholar 

  164. Pick LH, Halperin JM, Schwartz ST, Newcorn JH. A longitudinal study of neurobiological mechanisms in boys with attention-deficit hyperactivity disorder: preliminary findings. Biol Psychiatry 1999;45:371–373.

    PubMed  CAS  Google Scholar 

  165. Schulz KP, McKay KE, Newcorn JH, Sharma V, Gabriel S, Halperin JM. Serotonin function and risk for alcoholism in boys with attention-deficit hyperactivity disorder. Neuropsychopharmacol 1998;18:10–17.

    CAS  Google Scholar 

  166. van Goozen SHM, Matthys W, Cohen-Kettenis PT, Westenberg H, van Engeland H. Plasma monoamine metabolites and aggression: two studies of normal and oppositional defiant disorder children. Eur Neuropsychopharmacol 1999;9:141–147.

    PubMed  Google Scholar 

  167. Cook EH, Stein MA, Ellison T, Unis AS, Leventhal BL. Attention deficit hyperactivity disorder and whole blood serotonin levels: effects of comorbidity. Psychiatr Res 1995;57:13–20.

    CAS  Google Scholar 

  168. Walderhaug E, Lunde H, Nordvik JE, Landro NI, Refsum H, Magnusson A. Lowering of serotonin by rapid tryptophan depletion increases impulsiveness in normal individuals. Psychopharmacol 2002;164:385–391.

    CAS  Google Scholar 

  169. Juckel G, Schmidt LG, Rommelspacher H, Hegerl U. The tridimensional personality questionnaire and the intensity dependence of auditory evoked dipole source activity. Biol Psychiatry 1995;37:311–317.

    PubMed  CAS  Google Scholar 

  170. Buchsbaum MS, Wender PH. Averaged evoked responses in normal and minimally brain dysfunctioned children treated with amphetamine. A preliminary report. Arch Gen Psychiatry 1973;29:764–770.

    PubMed  CAS  Google Scholar 

  171. Hegerl U, Juckel G. Auditory evoked dipole source activity: indicator of central serotonergic dysfunction in psychiatric patients? Pharmacopsychiatry 1994;27:75–78.

    PubMed  CAS  Google Scholar 

  172. Zametkin AJ, Rapoport JL. Neurobiology of attention deficit disorder with hyperactivity: where have we come in 50 years? J Am Acad Child Adolesc Psychiatry 1987;26:676–686.

    PubMed  CAS  Google Scholar 

  173. Swanson J, Volkow ND. Pharmokokinetic and pharmacodynamic properties of methylphenidate in humans. In: Solanto MV, Arsten AFT, Castellanos FY, eds. Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford: Oxford University Press, 2001:259–282.

    Google Scholar 

  174. Kuczenski R, Segal D. Regional norepinephrine response to amphetamine using dialysis: comparison with caudate dopamine. Synapse 1992;11:164–169.

    PubMed  CAS  Google Scholar 

  175. Patrick KS, Markowitz JS. Pharmacology of methylphenidate, amphetamine enantiomers and pemoline in attention deficit hyperactivity disorder. Hum Psychopharmacol 1997;12:527–546.

    CAS  Google Scholar 

  176. Kuczenski R, Segal D. Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 2002;22:7264–7271.

    PubMed  CAS  Google Scholar 

  177. Kuczenski R, Segal DS, Leith NJ, Applegate CD. Effects of amphetamine, methylphenidate and apomorphine on regional brain serotonin and 5-hydroxyindole acetic acid. Psychopharmacol 1987;93:329–335.

    CAS  Google Scholar 

  178. Kuczenski R, Segal D. Effects of methylphenidate on extracellular dopamine, serotonin and norepinephrine: comparison with amphetamine. J Neurochem 1997;68:2032–2037.

    PubMed  CAS  Google Scholar 

  179. Bonhomme N, Cador M, Stinus L, Le Moal M, Spampinato U. Short and long-term changes in dopamine and serotonin receptor binding sites in amphetamine-sensitized rats: a quantitative autoradiographic study. Brain Res 1995;675:215–223.

    PubMed  CAS  Google Scholar 

  180. Plizka SR, McCracken JT, Maas JW. Catecholamines in attention-deficit hyperactivity disorder: current perspectives. J Am Acad Child Adolesc Psychiatry 1996;35:264–272.

    Google Scholar 

  181. Kusaga A, Yamashita Y, Koeda T, et al. Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Ann Neurol 2002;52:371–374.

    CAS  Google Scholar 

  182. Plizka SR. Comparing the effects of stimulant and non-stimulant agents on catecholamine function: implications for theories of ADHD. In: Solanto MV, Arnsten AFM, Castellanos FX, ed. Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford: Oxford University Press, 2001:332–352.

    Google Scholar 

  183. Oades RD. Attention deficit disorder and hyperkinetic syndrome: biological perspectives. In: Sagvolden T, Archer T, eds. Attention Deficit Disorder: Clinical and Basic Research, Hillsdale, NJ: Lawrence Erlbaum, 1989:353–368.

    Google Scholar 

  184. Aston-Jones G, Rajkowski J, Cohen J. Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 1999;46:1309–1320.

    PubMed  CAS  Google Scholar 

  185. Hanna GL, Ornitz EM, Hariharan M. Urinary epinephrine excretion during intelligence testing in attention-deficit hyperactivity disorder and normal boys. Biol Psychiatry 1996a;40:553–555.

    PubMed  CAS  Google Scholar 

  186. King JA, Barkley RA, Barrett S. Attention-deficit hyperactivity disorder and the stress response. Biol Psychiatry 1998;44:72–74.

    PubMed  CAS  Google Scholar 

  187. Konrad K, Gauggel S, Schurek J. Catecholamine functioning in children with traumatic brain injuries and children with attention-deficit/hyperactivity disorder. Cogn Brain Res 2003;16:425–433.

    CAS  Google Scholar 

  188. Donnelly M, Zametkin AJ, Rapoport JL, et al. Treatment of childhood hyperactivity with desipramine: plasma drug concentration, cardiovascular effects, plasma and urinary catecholamine levels, and clinical response. Clin Pharmacol Ther 1986;39:72–81.

    PubMed  CAS  Google Scholar 

  189. Elia J, Borcherding BG, Potter WZ, Mefford IN, Rapoport JL, Keysor CS. Stimulant drug treatment of hyperactivity: biochemical correlates. Clin Pharmacol Ther 1990;48:57–66.

    PubMed  CAS  Google Scholar 

  190. McCracken JT, Hinshaw SP, Henker B, Whalen CK, Zupran B. Urinary catecholamine differences in ADHD versus normal children and effects of methylphenidate. Society for Research in Child and Adolescent Psychopathology, Los Angeles, 1990 (cit. Plizka 2001).

    Google Scholar 

  191. Boulton AA. Phenylethylaminergic modulation of catcholaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 1991;15:139–156.

    PubMed  CAS  Google Scholar 

  192. De Groot CM, Bornstein RA, Baker GB. Obsessive-compulsive symptom clusters and urinary amine correlates in Tourette syndrome. J Nerv Ment Dis 1995;183:224–230.

    PubMed  Google Scholar 

  193. Karoum F, Linnoila M, Potter WZ, Chuang LW, Goodwin FK, Wyatt RJ. Fluctuating high urinary phenylethylamine excretion rates in some bipolar affective disorder patients. Psychiatry Res 1982;6:215–222.

    PubMed  CAS  Google Scholar 

  194. O’Reilly R, Davis BA, Durden DA, Thorpe L, Machnee H, Boulton AA. Plasma phenylethylamine in schizophrenic patients. Biol Psychiatry 1991;30:145–150.

    PubMed  CAS  Google Scholar 

  195. Baker GB, Bornstein RA, Rouget AC, Ashton AC, Van Muyden JC, Coutts RT. Phenylethylaminergic mechanisms in attention deficit disorder. Biol Psychiatry 1991;29:15–22.

    PubMed  CAS  Google Scholar 

  196. Chuang LW, Karoum F, Wyatt RJ. Different effects of behaviorally equipotent doses of amphetamine and methamphetamine on brain biogenic amines: specific increase of phenylethylamine by amphetamine. Eur J Pharmacol 1982;81:385–392.

    PubMed  CAS  Google Scholar 

  197. Zametkin AJ, Karoum F, Linnoila M, et al. Stimulants, urinary catecholamines and indoleamines in hyperactivity: a comparison of methylphenidate and amphetamine. Arch Gen Psychiatry 1985;42:251–255.

    PubMed  CAS  Google Scholar 

  198. Perlow MJ, Chieuh CC, Lake CR, Wyatt RJ. Increased dopamine and norepinephrine concentrations in primate CSF following amphetamine and phenylethylamine administration. Brain Res 1980;186:469–473.

    PubMed  CAS  Google Scholar 

  199. Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norpeinephrine and dopamine in prefrontal cortex of the rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacol 2002;27:699–711.

    CAS  Google Scholar 

  200. Michelson D, Adler L, Spencer T, et al. Atomoxetine in adults with ADHD: two randomized placebo-controlled studies. Biol Psychiatry 2003;53:211–220.

    Google Scholar 

  201. Spencer T, Biederman J, Wilens TE, Harding M, Donnell D, Griffin S. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J Am Acad Child Adolesc Psychiatry 1996;35:409–432.

    PubMed  CAS  Google Scholar 

  202. Garfinkel BD, Wender PH, Sloman L, O’Neill I. Tricyclic antidepressant and methylphenidate treatment of attention deficit disorder in children. J Am Acad Child Adolesc Psychiatry 1983;22:343–348.

    CAS  Google Scholar 

  203. Rapport MD, Carlson GA, Kelly KL, Pataki C. Methylphenidate and desipramine in hospitalized children: I. Separate and combined effects on cognitive function. J Am Acad Child Adolesc Psychiatry 1993;32:333–342.

    PubMed  CAS  Google Scholar 

  204. Gualtieri CT, Keenan PA, Chandler M. Clinical and neuropsychological effects of desipramine in children with attention deficit disorder. J Clin Psychopharmacol 1991;11:155–159.

    PubMed  CAS  Google Scholar 

  205. Donnelly M, Rapoport JL, Potter WZ, et al. Fenfluramine and dextroamphetamine treatment of childhood hyperactivity. Clinical and biochemical findings. Arch Gen Psychiatry 1989;46:205–212.

    PubMed  CAS  Google Scholar 

  206. Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 1999;46:1234–1242.

    PubMed  CAS  Google Scholar 

  207. Overtoom CCE, Verbaten MN, Kemner C, et al. Effects of methylphenidate, desipramine and L-dopa on attention and inhibition in children with attention deficit hyperactivity disorder. Behav Brain Res 2003;145:7–15.

    PubMed  CAS  Google Scholar 

  208. Simeon JV, Wiggins DM. Pharmacotherapy of attention-deficit-hyperactivity disorder. Canad J Psychiatry 1993;38:443–448.

    CAS  Google Scholar 

  209. Connor DF, Fletcher KE, Swanson JM. A meta-analysis of clonidine for symptoms of attention-deficit disorder. J AM Acad Child Adolesc Psychiatry 1999;38:1551–1559.

    PubMed  CAS  Google Scholar 

  210. Connor DF, Barkley RA, Davis HT. A pilot study of methylphenidate, clonidine, or a combination in ADHD comorbid with aggressive oppositional defiant or conduct disorder. Clin Pediatr 2000;39;15–25.

    CAS  Google Scholar 

  211. Hazell PL, Stuart JE. A randomized control trial of clonidine added to psychostimulant medication for hyperactive and aggressive children. J Am Acad Child Adolesc Psychiatry 2003;42:886–894.

    PubMed  Google Scholar 

  212. Berridge CW, Arnsten AFT, Foote SL. Noradrenergic modulation of cognitive function: clinical implications of anatomical, electrophysiological and behavioural studies in animal models. Psychol Med 1993;23:557–564.

    PubMed  CAS  Google Scholar 

  213. Van der Meere J, Gunning B, Stemerdink N, The effect of methylphenidate and clonidine on response inhibition and state regulation in children with ADHD. J Child Psychol Psychiatry 1999;40:291–298.

    PubMed  Google Scholar 

  214. Halliday RA, Callaway E, Lannon R. The effects of clonidine and yohimbine on human information processing. Psychopharmacol 1989;99:563–566.

    CAS  Google Scholar 

  215. Hunt RD, Cohen DJ, Anderson G, Clark L. Possible change in noradrenergic receptor sensitivity following methylphenidate treatment: growth hormone and MHPG response to clonidine challenge in children with attention deficit disorder and hyperactivity. Life Sci 1984;35:885–897.

    PubMed  CAS  Google Scholar 

  216. Campbell M, Cueva JE. Psychopharmacology in child and adolescent psychiatry: a review of the past seven years. Part 1. J Am Acad Child Adolesc Psychiatry 1995;34:1124–1132.

    PubMed  CAS  Google Scholar 

  217. Shekim WO, Bylund DB, Hodges K, Glaser R, Ray-Prenger C, Oetting G. Platelet alpha 2-adrenergic receptor binding and the effects of d-amphetamine in boys with attention deficit hyperactivity disorder. Neuropsychobiol 1994;29:120–124.

    CAS  Google Scholar 

  218. Pudovkina OL, Cremers TI, Westerink BHC. Regulation of the release of serotonin in the dorsal raphe nucleus by alpha1 and alpha2 adrenoceptors. Synapse 2003;50:77–82.

    PubMed  CAS  Google Scholar 

  219. Devoto P, Flore G, Vacca G, et al. Co-release of noradrenaline and dopamine from noradreneergic neurons in the cerebral cortex induced by clozapine, the prototype atypical antipsychotic. Psychopharmacol 2003;167:78–84.

    Google Scholar 

  220. Franowicz JS, Arnsten AFT. Actions of alpha-2 noradrenergic agonists on spatial working memory and blood pressure in rhesus monkeys appear to be mediated by the same receptor subtype. Psychopharmacol 2002;162:304–312.

    CAS  Google Scholar 

  221. Horrigan JP, Barnhill LJ. Guanfacine for the treatment of attention deficit hyperactivity disorder in boys. J Child Adolesc Psychopharmacol 1995;5:215–223.

    Google Scholar 

  222. Hunt RD, Arnsten AFT, Asbell MD. An open trial of guanfacine in the treatment of attention deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1995;34:50–54.

    PubMed  CAS  Google Scholar 

  223. Taylor FB, Russo J. Comparing guanfacine and dextroamphetamine for the treatment of adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 2001;21:223–228.

    PubMed  CAS  Google Scholar 

  224. Scahill L, Chappell PB, Kim YS, et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am J Psychiatry 2001;158:1067–1074.

    PubMed  CAS  Google Scholar 

  225. Nemzer ED, Arnold LE, Vololato NA, McConnell H. Amino acid supplementation as therapy for attention deficit disorder. J Am Acad Child Adolesc Psychiatry 1986;25:509–513.

    CAS  Google Scholar 

  226. Popper CW. Pharmacologic alternatives to psychostimulants for the treatment of attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 2000;9:605–646.

    PubMed  CAS  Google Scholar 

  227. Birmaher B, Stanley M, Greenhill L, Twomey J, Gavrilescu A, Rabinovich H. Platelet imipramine binding in children and adolescents with impulsive behavior. J Am Acad Child Adolesc Psychiatry 1990;29:914–918.

    PubMed  CAS  Google Scholar 

  228. Halperin JM, Schulz, KP, McKay KE, Sharma V, Newcorn JH. Familial correlates of central serotonergic function in children with disruptive behavior disorders. Psychiatr Res 2003;119:205–216.

    CAS  Google Scholar 

  229. Kornetsky C. Psychoactive drugs in the immature organism. Psychopharmacol 1970;17:105–136.

    CAS  Google Scholar 

  230. Gulley JM, Zahniser NR. Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic ligands. Eur J Pharmacol 2003;479:139–152.

    PubMed  CAS  Google Scholar 

  231. Rocha B. Stimulant and reinforcement effects of cocaine in monoamine transporter knockout mice. Eur J Pharmacol 2003;479:107–115.

    PubMed  CAS  Google Scholar 

  232. Sagvolden T, Johansen EB, Aase H, Russell VA. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 2005, in press.

    Google Scholar 

  233. Wender PH, Epstein RS, Kopin IJ, Gordon EK. Urinary monoamine metabolites in children with minimal brain dysfunction. Am J Psychiatry 1971;127:1411–1415.

    PubMed  CAS  Google Scholar 

  234. Shekim WO, Dekirmenjian H, Chapel JL. Urinary catecholamine metabolites in hyperactive boys treated with D-amphetamine. Am J Psychiatry 1977;134:1276–1279.

    PubMed  CAS  Google Scholar 

  235. Rapoport JL, Mikkelsen EJ, Ebert MH, Brown GL, Weise VL, Kopin IJ. Urinary catecholamine and amphetamine excretion in hyperactive and normal boys. J Nerv Ment Dis 1978;66:731–737.

    Google Scholar 

  236. Shekim WO, Dekirmenjian H, Chapel JL. Urinary MHPG in minimal brain dysfunction and its modification by D-amphetamine. Am J Psychiatry 1979;136:667–671.

    PubMed  CAS  Google Scholar 

  237. Khan AU, Dekirmenjian H. Urinary excretion of catecholamine metabolites in hyperkinetic child syndrome. Am J Psychiatry 1981;138:108–112.

    PubMed  CAS  Google Scholar 

  238. Shekim WO, Javaid J, Dans JM, Bylund DBN. Urinary MHPG and HVA excretion in bos with attention deficit disorder and hyperactivity treated with D-amphetamine. Biol Psychiatry 1983;18:707–714.

    PubMed  CAS  Google Scholar 

  239. Shen Y-C, Wang Y-F. The effect of methylphenidate on urinary catecholamine excretion in hyperactivity: a partial replication. Biol Psychiatry 1988;350–356.

    Google Scholar 

  240. Shekim WO Sinclair E, Glaser RD, Horwitz E, Javaid J, Bylund DB. Norepinephrine and dopamine metabolites and educational variables in boys with attention deficit disorder and hyperactivity. J Child Neurol 1987;2:50–56.

    PubMed  CAS  Google Scholar 

  241. Hanna GL, Ornitz EM, Hariharan M. Urinary catecholamine excretion and behavioral differences in ADHD and normal boys. J Child Adolesc Psychopharmacol 1996b;6:63–73.

    PubMed  CAS  Google Scholar 

  242. Oades RD, Müller BW. The development of conditioned blocking and monoamine metabolism in children with attention-deficit-hyperactivity disorder or complex tics and healthy controls: an exploratory analysis. Behav Brain Res 1997;88:95–102.

    PubMed  CAS  Google Scholar 

  243. Rapoport JL, Quinn PO, Scribanic N, Murphy DL. Platelet serotonin of hyperactive school age boys. Br J Psychiat 1974;125:138–140.

    CAS  Google Scholar 

  244. Ferguson HB, Pappas BA, Trites RL, Peters DA, Taub H. Plasma free and total tryptophan, blood serotonin, and the hyperactivity syndrome: no evidence for the serotonin deficiency hypothesis. Biol Psychiat 1981;16:231–238.

    PubMed  CAS  Google Scholar 

  245. Ionescu G, Kiehl R, Eckert S, Zimmerman T. Abnormal plasma catecholamines in hyperkinetic children. Biol Psychiat 1990;28;547–551.

    PubMed  CAS  Google Scholar 

  246. Coleman M. Serotonin concentrations in whole blood of hyperactive children. J Pediatr 1971;78:985–990.

    PubMed  CAS  Google Scholar 

  247. Saul RC, Ashby CD. Measurement of whole blood serotonin as a guide in prescribing psychos-timulant medication for children with attentional deficits. Clin Neuropharmacol 1986;9:189–195.

    PubMed  CAS  Google Scholar 

  248. Bhagnan HN, Coleman M, Coursina DB. The effect of pyridoxine hydrochloride on blood serotonin and pyridoxal phopsphate contents in hyperactive children. Pediatrics 1975;55:437–441.

    Google Scholar 

  249. Irwin M, Belendink K, McCloskay K, Freedman DX. Trypotophan metabolism in children with attention deficit disorder. Am J Psychiatry 1981;138:1082–1085.

    PubMed  CAS  Google Scholar 

  250. Shetty T, Chase TN. Central monoamines and hyperkinesis of childhood. Neurol 1976;26;1000–1002.

    CAS  Google Scholar 

  251. Shaywitz BA, Cohen DJ, Bowers MB. CSF amine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine-a preliminary report. J Pediatr 1977;90:67–71.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Oades, R.D. (2005). The Roles of Norepinephrine and Serotonin in Attention Deficit Hyperactivity Disorder. In: Gozal, D., Molfese, D.L. (eds) Attention Deficit Hyperactivity Disorder. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-891-9:097

Download citation

  • DOI: https://doi.org/10.1385/1-59259-891-9:097

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-312-1

  • Online ISBN: 978-1-59259-891-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics