Skip to main content

Validation of Fractional Flow Reserve in Humans

  • Chapter
Coronary Pressure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 195))

  • 85 Accesses

Abstract

During maximum vasodilation, which corresponds with minimal myocardial resistance, distal coronary pressure divided by aortic pressure equals maximum myocardial blood flow divided by the normally expected value as it would be if no epicardial lesion were present1,2. The theoretical background of the concept of fractional flow reserve and its experimental validation have been provided in the preceding chapters. So far, however, pressure-derived fractional flow reserve was validated in an open chest dog model against the ratio of epicardial hyperemic flow velocity in the presence of a stenosis to hyperemic flow velocity in the absence of a stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pijls NHJ, van Son AM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87: 1354–1367.

    Article  PubMed  CAS  Google Scholar 

  2. De Bruyne B, Pijls NHJ, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR. Transstenotic coronary pressure gradient measurements in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol 1993; 22: 119–126.

    Article  PubMed  Google Scholar 

  3. Hoffman EJ, Phelps ME, Huang SC, Collard PE, Bidaut LM, Schwab RL, Ricci AR. Dynamic, gated and high resolution imaging with the ECAT III. IEEE Trans Nucl Sci 1986; 33: 452–455.

    Article  Google Scholar 

  4. Bergmann SR, Herrerro P, Markham J, Walsh MN: Non-invasive quantitation of myocardial blood flow in human subjects with oxygen-labeled water and positron emission tomography. JAm Coll Cardiol 1989; 14: 639–652.

    Article  CAS  Google Scholar 

  5. Araujo L, Lammertsma A, Rhodes C, McFalls E, Iida H, Rechavia E, Galassi A, De Silva R, Jones T, Maseri A. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991; 83: 875–885.

    Article  PubMed  CAS  Google Scholar 

  6. Muzik O, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of Nitrogen-13-Ammonia tracer kinetic model for quantification of myocardial blood flow using PET. JNucl Med 1993; 34: 83–91.

    CAS  Google Scholar 

  7. Bol A, Melin LA, Vanoverschelde JL, Baudhuin T, Vogelaers D, De Pauw M, Michel C, Luxen A, Labar D, Cogneau M, Robert A, Heyndrickx GR, Wijns W. Direct comparison of [13>]ammonia and [15O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 1993; 87: 512–525.

    Article  PubMed  CAS  Google Scholar 

  8. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiological measure of stenosis severity. JAm Coll Cardiol 1990; 15: 459–474.

    Article  CAS  Google Scholar 

  9. Reiber JHC, Serruys PW, Kooijman CJ, Wijns W, Stager CJ, Gerbrands JJ, Schuurbiers JCH, den Boer A, Hugenholtz PG. Assessment of short-, medium- and long-term variations in arterial dimensions from computer-assisted quantification of coronary cineangiograms. Circulation 1985; 71: 280–288.

    Article  PubMed  CAS  Google Scholar 

  10. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. JAm Coll Cardiol 1986; 7: 103–113.

    Article  CAS  Google Scholar 

  11. De Bruyne B, Sys SU, Heyndrickx GR. Percutaneous transluminal coronary angioplasty catheters versus fluid-filled pressure monitoring guide wires for coronary pressure measurements and correlation with quantitative coronary angiography. Am J Cardiol 1993; 72: 1101–1106.

    Article  PubMed  Google Scholar 

  12. Mancini GBJ, Simon SB, McGillem MJ, LeFree MT, Friedman HZ, Vogel RA. Automated quantitative coronary angiography: morphologic and physiological validation in vivo of a rapid digital angiographie method. Circulation 1987; 75: 452–460.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J., De Bruyne, B. (2000). Validation of Fractional Flow Reserve in Humans. In: Coronary Pressure. Developments in Cardiovascular Medicine, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9564-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9564-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5398-5

  • Online ISBN: 978-94-015-9564-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics