Skip to main content

FFR in Some Specific Conditions

  • Chapter
Coronary Pressure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 195))

  • 84 Accesses

Abstract

An essential prerequisite for the calculation of FFR from aortic and coronary pressure is to obtain the measurements under conditions of maximum hyperemia. Only in this situation it can be assumed that the resistance of the vascular bed is minimal and therefore equal to the resistance in the same vascular bed but not depending on an epicardial stenosis. This condition has been demonstrated in animals (chapter 7) and in humans (chapter 8). Only when the resistance of the vascular bed depending on an epicardial stenosis equals the resistance of the same vascular bed but without stenosis, these resistances can be cancelled in the calculation of FFR2. It has been shown in animals and in humans, in the physiological range of aortic pressure, that the relation between myocardial flow and driving pressure is linear during maximum microvascular vasodilation3–4 This implies that, during maximum hyperemia, the ratio of two myocardial flows (which corresponds to the definition of FFR) equals the ratio of their respective driving pressures. The key point with respect to FFR is not the slope but the linearity of the pressure-flow relation under conditions of maximum vasodilation. When maximum hyperemia is not achieved the relation between hyperemic flow and driving pressure is curvilinear, and thus, the ratio of these (‘non-hyperemic’) flows does not equal the ratio of their respective driving pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Bruyne B, Baudhuin T, Melin JA, Pijls NHJ, SYS SU, Bol A, Paulus WJ, Heyndrickx GR, Wijns W. Coronary flow reserve calculated from pressure measurements in man. Validation with positron emission tomography. Circulation 1994; 89: 1013–1022.

    Article  PubMed  Google Scholar 

  2. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing function stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87: 1354–67.

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman JIE, Spaan JAE. Pressure-flow relations in coronary circulation. Physiol Rev 1990; 70: 331–390.

    PubMed  CAS  Google Scholar 

  4. Di Mario C, Krams R, Gil R, Serruys PW. Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 1994; 90: 1215–1224.

    Article  PubMed  Google Scholar 

  5. Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, Sapp SK, Maclntyre WJ, Thomas JD. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after acute myocardial infarction. Circulation 1994; 90: 2687–2694.

    Article  PubMed  CAS  Google Scholar 

  6. Califf RM, Topol EJ, Gersh BJ. From myocardial salvage to patient salvage in acute myocardial infarction: the role of reperfusion therapy. J Am Coll Cardiol 1989; 14: 1382–1388.

    Article  PubMed  CAS  Google Scholar 

  7. Uren NG, Crake T, Lefroy DC, De Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994; 331–222–227.

    Google Scholar 

  8. Maseri A, Crea F, Kaski JC, Crake T. Mechanisms of angina pectoris in syndrome X. JAm Coll Cardiol 1991; 17: 499–506.

    Article  CAS  Google Scholar 

  9. Claeys MJ, Vrints CJ, Bosmans J, Krug B, Blockx PP, Snoeck JP. Coronary flow reserve during coronary angioplasty in patients with a recent myocardial infarction: relation to stenosis and myocardial viability. J Am Coll Cardiol 1996; 28: 1712–1719.

    Article  PubMed  CAS  Google Scholar 

  10. Pitt B. Evaluation of the postinfarct patient. Circulation 1995; 91: 1855–1860.

    Article  PubMed  CAS  Google Scholar 

  11. Kern MJ, Deligonul U, Tatineni S, Serota H, Aguirre FV, Hilton TC: Intravenous adenosine continous infusion and low dose bolus administration for determination of coronary vasodilatory reserve in patients with and without coronary artery disease. JAm Coll Cardiol 1991; 18: 718–729.

    Article  CAS  Google Scholar 

  12. Uren NG, Camici PG, Melin JA, Bol A, De Bruyne B, Radvan J, Olivotto I, Rosen SD, Impallomeni M, Wijns W. Effect of aging on myocardial perfusion reserve. JNucl Med 1995; 36: 2032–2036.

    CAS  Google Scholar 

  13. Harris CN, Aronow WS, Parker DP, Kaplan MA. Treadmill stress in left ventricular hypertrophy. Chest 1973; 63: 353–359.

    Article  PubMed  CAS  Google Scholar 

  14. Marcus ML, Mueller TM, Gascho JA, Kerber RE. Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation. Am J Cardiol 1979;44:1023–1031.

    Google Scholar 

  15. Hoffmann JIB: Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984; 70: 153–159.

    Article  Google Scholar 

  16. De Bruyne B, Pijls NHJ, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation 2000 (in press).

    Google Scholar 

  17. Vanoverschelde JL, Wijns W, Depre C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA. Mechanisms of chronic regional post-ischemic dysfunction in humans. New insights from the study of non-infarcted collateral-dependent myocardium. Circulation 1993; 87: 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  18. Gould KL. Coronary atherosclerosis and reversing atherosclerosis. 2“d Edition, Arnold Publishers, 1999; distributed by Oxford University Press.

    Google Scholar 

  19. Hanekamp C, Koolen JJ, Pijls NHJ, Bonnier JJRM, Michels HR. Comparison of quantitative coronary angiography, intravascular ultrasound, and pressure-derived fractional flow reserve to assess optimal stent deployment. Circulation 1999; 99: 1015–1021.

    Article  PubMed  CAS  Google Scholar 

  20. De Bruyne B, Stockbroeckx J, Demoor D, Heyndrickx GR, Kern MJ. Role of side holes in guide catheters: observations on coronary pressure and flow. Cath Cardiov Diagn 1994; 33: 145–152.

    Article  Google Scholar 

  21. Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP. Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation 1986; 73: 865–876.

    Article  PubMed  CAS  Google Scholar 

  22. Gordon JB, Ganz Peter, Nabel EG, Fish RD, Zebede J, Mudge GH, Alexander GW, Selwyn AP. Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. JClin Invest 1989; 83: 1946–1952.

    Article  CAS  Google Scholar 

  23. Ludmer PL, Selwyn AP, Shook THL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. NEngl JMed 1986; 315: 1046–1051.

    Article  CAS  Google Scholar 

  24. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 1988; 77: 43–52.

    Article  PubMed  CAS  Google Scholar 

  25. Bartunek J, Wijns W, Heyndrickx GR, De Bruyne B. Effects of dobutamine on coronary stenosis physiology and morphology. Comparison with intracoronary adenosine. Circulation 1999; 100: 243–249.

    Article  PubMed  CAS  Google Scholar 

  26. Wijffels E, Wijns W, Heyndrickx GR, De Bruyne B. Does high dose dobutamine induce a paradoxical coronary vasoconstriction of atherosclerotic arteries ? Eur Heart J 1998; 19: 334 (abstract).

    Google Scholar 

  27. Tamimi HE, Mansour M, Wargovich TJ, Hill JA, Kerensky RA, Conti R, Pepine CJ. Constrictor and dilator responses to intracoronary acetylcholine in adjacent segments of the same coronary artery in patients with coronary artery disease. Circulation 1994; 89: 45–51.

    Article  PubMed  Google Scholar 

  28. Penny WF, Rodman H, Long J, Bhargava V, Carrigan K, Ibriham A, Shabetal R, Ross J, Peterson KL. Heterogeneity of vasomotor response to acetylcholine along the human coronary artery. JAm Coll Cardiol 1995; 25: 1046–1055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J., De Bruyne, B. (2000). FFR in Some Specific Conditions. In: Coronary Pressure. Developments in Cardiovascular Medicine, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9564-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9564-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5398-5

  • Online ISBN: 978-94-015-9564-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics