Skip to main content

The Pharmacogenetics Of Atherosclerosis

  • Chapter
Cardiovascular Genetics for Clinicians

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 239))

Abstract

Atherosclerosis is the pathophysiological basis of the majority of morbidity and mortality in Western societies. In recent years progression has been made in unraveling the basis of atherosclerosis. Presently, atherosclerosis is considered to have a complex pathophysiology.in which inflammation is most important [1]. Advances also have been made in both primary and secondary prevention of complications of atherosclerosis like myocardial infarction and ischemic cerebrovascular disease. New treatment strategies, incorporating cholesterollowering therapy, improve survival with increasing financial costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R. Atherosclerosis—an inflammatory disease. N.Engl.J.Med. 1999; 340:115–26.

    Article  PubMed  CAS  Google Scholar 

  2. Jukema J.W, Bruschke A.V, van Boven A.J et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterollevels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995; 91:2528–40.

    CAS  Google Scholar 

  3. Marenberg M.E, Risch N, Berkman L.F, Floderus B, de Faire U. Genetic susceptibility to death from coronary he art disease in a study of twins. N.Engl.Med. 1994; 330: 1041–6.

    Article  CAS  Google Scholar 

  4. Katan M.B, Beynen A.C, de Vries J.H, Nobels A. Existence of hypo-and hyperresponders to dietary cholesterol in man. Am.J.Epidemiol. 1986; 123:221–34.

    PubMed  CAS  Google Scholar 

  5. Wang X.L, Sim A.S, Badenhop R.F, McCredie R.M, Wilcken D.E. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat.Med. 1996; 2:41–5.

    Article  PubMed  CAS  Google Scholar 

  6. Nebert D.W. Suggestions for the nomenclature of human alleles: relevance to ecogenetics, pharmacogenetics and molecular epidemiology. Pharmacogenetics 2000; 10:279–90.

    Article  PubMed  CAS  Google Scholar 

  7. Roses A.D. Pharmacogenetics and future drug development and delivery. Lancet 2000; 355:1358–61.

    Article  PubMed  CAS  Google Scholar 

  8. Wilkins M.R, Roses A.D, Clifford C.P. Pharmacogenetics and the treatment of cardiovascular disease. Heart 2000; 84:353–4.

    Article  PubMed  CAS  Google Scholar 

  9. McBride K.L, Gilchrist G.S, Smithson W.A, Weinshilboum R.M, Szumlanski C.L. Severe 6-thioguanine-induced marrow aplasia in a child with acute lymphoblastic leukemia and inhibited thiopurine methyltransferase deficiency. J.Pediatr.HematoI.Oncol. 2000; 22:441–5.

    Article  CAS  Google Scholar 

  10. McLeod H.L, Pritchard S.C, Githang’a J et al. Ethnic differences in thiopurine methyltransferase pharmacogenetics: evidence for allele specificity in Caucasian and Kenyan individuals. Pharmacogenetics 1999; 9:773–6.

    Article  PubMed  CAS  Google Scholar 

  11. McLeod H.L, Coulthard S, Thomas A.E et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute Iymphoblastic leukaemia. Br.J.Haematol. 1999; 105:696–700.

    Article  PubMed  CAS  Google Scholar 

  12. McLeod H.L, Krynetski E.Y, Relling M.V, Evans W.E. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000; 14:567–72.

    Article  PubMed  CAS  Google Scholar 

  13. Mikus G, Gross A.S, Beckmann J, Hertrampf R, Gundert-Remy U, Eichelbaum M. The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clin.Pharmacol.Ther. 1989; 45:562–7.

    Article  PubMed  CAS  Google Scholar 

  14. Siddoway L.A, Thompson K.A, MeAllister C.B et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmaeokmetic consequences. Circulation 1987; 75:785–91.

    Google Scholar 

  15. Reymer P.W, Gagne E, Groenemeyer B.E et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat.Genet. 1995; 10:28–34.

    Article  PubMed  CAS  Google Scholar 

  16. Groenemeijer B.E, Hallman M.D, Reymer P.W et al. Genetic variant showing a positive interaction with beta-bloeking agents with a benefieial influence on lipoprotein lipase activity, HDL cholesterol, and triglyeeride levels in eoronary artery disease patients. The Ser447-stop substitution in the lipoprotein lipase gene. REGRESS Study Group. Circulation 1997; 95:2628–35.

    CAS  Google Scholar 

  17. Wittrup H.H, Tybperg-Hansen A, Nordestgaard B.G. Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemie heart disease. A meta-analysis. Circulation 1999; 99:2901–7.

    Article  PubMed  CAS  Google Scholar 

  18. Mailly F, Tugrul Y, Reymer P.W et al. A common variant in the gene for lipoprotein lipase (Asp9—>Asn). Functional implieations and prevalence in normal and hyperlipidemic subjects. ArterioseIer. Thromb. Vase. Biol. 1995; 15:468–78.

    Article  CAS  Google Scholar 

  19. Jukema J.W, van Boven A.J, Groenemeijer B et al. The Asp9 Asn mutation in the lipoprotein lipase gene is associated with inereased progression of eoronary atheroselerosis. REGRESS Study Group, Interuniversity Cardiology Institute, Utrecht, The Netherlands. Regression Growth Evaluation Statin Study. Circulation 1996; 94:1913–8.

    CAS  Google Scholar 

  20. Kuivenhoven J.A, Jukema J.W, Zwinderman A.H. et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N.Engl.J.Med. 1998; 338:86–93.

    CAS  Google Scholar 

  21. Ordovas J.M, Cuppies L.A, Corella D et al. Association of Cholesteryl Ester Transfer Protein-TaqIB Polymorphism With Variations in Lipoprotein Subclasses and Coronary Heart Disease Risk: The Framingham Study. Arteriosclerosis, Thrombosis, and Vascular Biology 2000; 20:1323–9.

    Article  PubMed  CAS  Google Scholar 

  22. Cambien F, Poirier O, Lecerf L et al. Deletion polymorphism in the gene for angiotensinconverting enzyme is a potent risk factor for myocardial infarction. Nature 1992; 359:641–4.

    Article  PubMed  CAS  Google Scholar 

  23. Agerholm-Larsen B, Nordestgaard B.G, Tybjaerg-Hansen A. ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arteriosclerosis, Thrombosis, and Vascular Biology 2000; 20:484–92.

    Article  PubMed  CAS  Google Scholar 

  24. Rieder M.J, Taylor S.L, Clark A.G, Nickerson D.A. Sequence variation in the human angiotensin converting enzyme. Nat.Genet. 1999; 22:59–62.

    Article  PubMed  CAS  Google Scholar 

  25. Okamura A, Ohishi M, Rakugi H et al. Pharmacogenetic analysis of the effect of angiotensinconverting enzyme inhibitor on restenosis after percutaneous transluminal coronary angioplasty. Angiology 1999; 50:811–22.

    Article  PubMed  CAS  Google Scholar 

  26. Roses A.D. Pharmacogenetics and the practice of medicine. Nature 2000; 405:857–65.

    Article  PubMed  CAS  Google Scholar 

  27. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11:241–7.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenthai N, Schwartz R.S. In search of perverse polymorphisms. N Engl J Med 1998; 338:122–4.

    Article  Google Scholar 

  29. Wang X.L, Mahaney M.C, Sim A.S et al. Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels. Arterioscler.Thromb.Vasc.Biol. 1997; 17:3147–53.

    Article  PubMed  CAS  Google Scholar 

  30. Jukema J.W. Matching treatment to the genetic basis of (lipid) disorder in patients with coronary artery disease. Heart 1999; 82:126–7.

    PubMed  CAS  Google Scholar 

  31. Young R.A. Biomedical discovery with DNA arrays. Cell2000; 102:9–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jukema, J.W., Agema, W.R.P. (2001). The Pharmacogenetics Of Atherosclerosis. In: Doevendans, P.A., Wilde, A.A.M. (eds) Cardiovascular Genetics for Clinicians. Developments in Cardiovascular Medicine, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1019-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1019-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3888-1

  • Online ISBN: 978-94-010-1019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics