Skip to main content

Genetic Markers of Hemostatic Factors

  • Chapter
Cardiovascular Genetics for Clinicians

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 239))

  • 61 Accesses

Abstract

Thrombosis underlies most acute manifestations of coronary atherosclerotic disease, including myocardial infarction (MI) [1]. In this setting, the rupture of an atherosclerotic plaque, endothelial cell damage, or both, are the key events that trigger the thrombotic process. Plaque disruption is followed by the exposure of blood flow to tissue factor (TF), a glycoprotein elaborated by several cells infiltrating the plaque, which is accumulated especially in the lipid-rich core [2]. TF forms a high-affinity complex with coagulation factor VII [3], which initiates a cascade of enzymatic reactions resulting in the local generation of thrombin and deposition of fibrin. The evolution to occ1usive thrombus or resolving lesion is depending on a delicate equilibrium between thrombosis and endogenous thrombolysis. As part of the response to any type of endothelial wall disruption, platelet adhesion occurs through the binding of the glycoprotein (Gp) Ib/IX/V platelet receptor to von Willebrand Factor (vWF) and/or direct binding of platelets by means of their collagen receptor (Gp Ia/IIa complex). These reactions determine a conformational change in the platelet Gp IIb/IIIa integrin, from a ligand-unreceptive state to a ligand-receptive state. Ligand-receptive Gp IIb/IIIa receptors bind fibrinogen molecules, which form bridges between adjacent platelets, facilitating platelet aggregation and propagation of thrombus [4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fuster V., Badimon L., Badimon J. and Chesebro J.H. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992; 326:242–50.

    PubMed  CAS  Google Scholar 

  2. Wilcox J.N., Smith K.M., Schwartz S.M., Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989; 86:2839–43.

    PubMed  CAS  Google Scholar 

  3. Rao L.V., Rapaport S.I. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway ofblood coagulation. Proc Natl Acad Sci USA 1988; 85:6687–91.

    PubMed  CAS  Google Scholar 

  4. Madan M., Berkowitz S.D., Tcheng J.E. Glycoprotein IIb/IIIa integrin blockade. Circulation 1998; 98:2629–35.

    PubMed  CAS  Google Scholar 

  5. Lefkovits J., Plow E.F., TopoI E.J. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 1995; 332:1553–9.

    PubMed  CAS  Google Scholar 

  6. Meade T.W., Mellows S., Brozovic M., et al. Haemostatic function and ischaemic heart disease: prinicipal results of the Northwick Park Heart Study. Lancet. 1986; 2:533–7

    PubMed  CAS  Google Scholar 

  7. Wilhelmsen L., Svardsudd K., Korsan-Bengtsen K., Larsson B., Welin L., Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med. 1984; 311:501–505.

    PubMed  CAS  Google Scholar 

  8. Heinrich J., Balleisen L., Schulte H., Assmann G., van de Loo J. Fibrinogen and factor VII in the prediction of coronary risk: results from the PROCAM study in healthy men. Arterioscler Thromb 1994; 14:54–9.

    PubMed  CAS  Google Scholar 

  9. Maresca G., Di Blasio A., Marchioli R., Di Minno G. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Va sc Biol1999; 19: 1368–77.

    CAS  Google Scholar 

  10. Lee A.J., Lowe G.D.O., Woodward M., Tunstall Pedoe H. Fibrinogen in relation to a personal history of prevalent hypertension, diabetes, stroke, intermittent claudication, coronary heart disease and family history: the Scottish Heart Health Study. Br Heart J. 1993; 69:338–42.

    PubMed  CAS  Google Scholar 

  11. Meade T.W., Imeson J., Stirling Y. Effects of changes in smoking and other characteristics on clotting factors and the risk ofischaemic heart disease. Lancet. 1987; 986–8.

    Google Scholar 

  12. Bini A., Kudryk B. Fibrinogen in human athrosclerosis. Ann N Y Acad Sci 1995; 748:461–71.

    PubMed  CAS  Google Scholar 

  13. Smith E, Keen G, Grant A. Fate of fibrinogen in human arterial intimae. Arteriosclerosis 1990; 6:263–75.

    Google Scholar 

  14. Kant J.A., Furnace A.J., Saxe D., Simon M.I., McBride O.W., Crabtree G.R. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transcription and inversion. Proc Natl Acad Sci USA. 1985; 82:2344–8.

    PubMed  CAS  Google Scholar 

  15. Behague I., Poirier O., Nicaud V., et al. fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. Circulation. 1996; 93:440–9.

    PubMed  CAS  Google Scholar 

  16. Humphries S.E., Ye S., Talmud P., Bara L., Wilhelmsen L., Tiret L. European Athersclerosis Research Study: genotype at the fibrinogen locus (G.4ss-A gene) is associated with differences in plasma fibrinogen levels in young men and women from different regions in Europe: evidence for gender-genotype-environment interaction. Arterioscler Thromb Vasc Biol. 1995; 15:96–104.

    PubMed  CAS  Google Scholar 

  17. TybJaerg-Hansen A., Agerholm-Larsen B., Humphries S.E., Abildgaard S., Schnohr P., Nordestgaard B.G. A common mutation (G45S-A) in the-fibrinogen promoter is an independent predictor of plasma fibrinogen, but not of ischemic heart disease: a study of 9,127 individuals based on the Copenhagen City Heart Study. J Clin lnvest. 1997; 99:3034–9.

    CAS  Google Scholar 

  18. Gardemann A., Schwartz O., Haberbosch W., et al. Positive association of the fibrinogen HIIH2 gene variation to basal fibrinogen levels and to increase in fibrinogen concentration during acute phase reaction but not to coronary artery disease and myocardial infaretion. Thromb Haemost. 1997; 77: 1120–6.

    PubMed  CAS  Google Scholar 

  19. de Maat M.P.M., Kastelein J.J.P., Jukema J.W., et al.-455G/A polymorphism of the-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men: proposed role for an acute phase reaetion pattern of fibrinogen. Arterioscler Thromb Vasc Biol.1998; 18:265–7l.

    PubMed  Google Scholar 

  20. Wang X.L., Wang J., McCredie R.M., Wileken D.E.L. Polymorphisms of factor V, factor VII, and fibrinogen genes: relevance to severity of coronary artery disease. Arterioseler Thromb Vasc Biol1997; 17:246–5l.

    CAS  Google Scholar 

  21. Zito F., Di Castelnuovo A., Amore C., D’Orazio A., Donati M.B., Iacoviello L. Bcl I polymorphism in the fibrinogen-chaingene is associated with the risk of familial myocardial infaretion by inereasing plasma fibrinogen levels: a ease-control study in a sampie of GISSI-2 patients. Arterioseler Thromb Vasc Biol. 1997; 17:3489.

    CAS  Google Scholar 

  22. Baumann R.E., Hensehen A.R. Human fibrinogen polymorphic site analysis by restrietion endonuelease digestion and. allele-specific polymerase chain reaetion amplifieation: identifieation of polymorphisms at position A 312 and B 448. Blood. 1996; 82:2117–24.

    Google Scholar 

  23. Muszbek L., Adany R., Mikkola H. Novel aspects of blood coagulation factor XIII, I: strueture, distribution, aetivation and funetion. Crit Rev Clin Lab Sci. 1996; 33:357–421

    PubMed  CAS  Google Scholar 

  24. Credo R.B., Curtis C.G., Lorand L.-chain domain of fibrinogen controls generation of fibrinoligase (factor XIIIa): calcium ion regulatory aspects. Biochemistry. 1981; 20:3770–8.

    PubMed  CAS  Google Scholar 

  25. Curran J.M., Evans A., Arveiler D., et al. The-fibrinogen T/A 312 polymorphism in the ECTIM study. Thromb Haemost. 1998; 79:1057–8.

    Google Scholar 

  26. Hamsten A., Iselius L., De Faire U., Blomback M. Genetic and cultural inheritanee of plasma fibrinogen concentrations. Lancet. 1987; 2:988–9l.

    PubMed  CAS  Google Scholar 

  27. Friedlander Y., Elkana Y., Sinnreich R., Kark J.D. Genetic and environmental sources of fibrinogen variability in Israeli families: The Kibbutzim Study. Am J Hum Genet. 1995; 56:1194.

    PubMed  CAS  Google Scholar 

  28. de Lange M., Snieder H., Arlens R.A.S., Spector T.D., Grant P.J. The genetics ofhaemostasis: a twin study. Lancet2001; 357:101–5.

    PubMed  Google Scholar 

  29. Redondo M., Watzke H.H., Stucki B., et al. Coagulation factors II, V, VII, and X, prothrombin gene 2021 OG-to-A transition, and factor V Leiden in coronary artery disease: high factor V elotting activity is an independent risk factor for myocardial infaretion. Arterioseler Thromb Vasc Biol1999; 19:1020–5.

    CAS  Google Scholar 

  30. Folsom A.R., Wu K.K., Rosamond W.D., Sharrett A.R., Chambless L.E. Prospective study of hemostatie factors and incidence of coronary heart disease: the Atheroselerosis Risk in Communities (ARIC) Study. Circulation 1997; 96: 1102–8.

    PubMed  CAS  Google Scholar 

  31. Smith F.B., Lee A.J., Fowkes F.G.R., Priee J.F., Rumley A., Lowe G.D.O. Hemostatic factors as predietors of isehemic heart disease and stroke in the Edinburgh Artery Study. Arterioseler Thromb Vasc Biol1997; 17:3321–5.

    CAS  Google Scholar 

  32. Green F.G., Humphries S. Genetic determinants of arterial thrombosis. Baillieres Clin Haematol 1994; 7:675–92.

    PubMed  CAS  Google Scholar 

  33. Green F., Kelleher C., Wilkes H., Temple A., Meade T., Humphries S. A common genetic polymorphism associated with lower coagulation factor VII levels in healthy individuals. Arteroscler Thromb.1991; 11:540.

    Google Scholar 

  34. Marehetti G., Patracehini P., Papasehini M., Ferrati M., Bemardi F. A polymorphism in the 5’region of coagulation factor VII gene (F7) caused by an inserted decanucleotide. Hum Genet. 1993; 90:575.

    Google Scholar 

  35. Bemardi F., Arcieri P., Bertina R.M., et al. Contribution of factor VII genotype to aetivated FVII levels: differences in genotype frequencies between northem and southem European populations. Arterioscler Thromb Vasc Biol1997; 17:2548–53.

    Google Scholar 

  36. Bemardi F., Marchetti G., Pinotti M, et al. Faetor VII gene polymorphisms contribute about one third of the factor VII level variation in plasma. Arterioscler Thromb Vasc Biol 1996; 16:72–6.

    Google Scholar 

  37. laeoviello L., Di Castelnuovo A., de KnijffP, et al. Polymorphisms in the coagulation factor VII gene and the risk of myocardial infaretion. N Engl J Med 1998; 338:79–85.

    PubMed  CAS  Google Scholar 

  38. Lane A., Green F., Searabin P.Y., et al. Faetor VII Arg/Gln353 polymorphism determines factor VII eoagulant aetivity in patients with myocardial infaretion (MI) and control subjects in Belfast and in France but is not a strong indieator of MI risk in the ECTIM study. Atherosclerosis 1996; 119:119–27.

    PubMed  CAS  Google Scholar 

  39. Doggen C.J.M., Manger Cats V., Bertina R.M., Reitsma P.H., Vandenbroucke J.P., Rosendaal F.R. A genetic propensity to high factor VII is not associated with the risk of myocardial infarction in men. Thromb Haemost 1998; 80:281–5.

    PubMed  CAS  Google Scholar 

  40. Girelli D., Russo C., Ferraresi P., Olivieri O., Pinotti M., Friso S., Manzato F., Mazzucco A., Bemardi F., Corrocher R. Polymorphisms in the Factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. New Engl J Med 2000; 343:774–80.

    PubMed  CAS  Google Scholar 

  41. Mrozikiewicz P.M., Cascorbi I., Ziemer S., Laule M., Meisel C., Stangl V., Rutsch W., Wemecke K., Baumann G., Roots I., Stangl K. Reduced procedural risk for coronary catheter interventions in carriers of the coagulation factor VII-Gln353 gene. J Am Coll Cardiol 2000; 36: 1520–5.

    PubMed  CAS  Google Scholar 

  42. The Medical Research Council’s General Practice Research Framework. Thrombosis Prevention Trial: randomised trial oflow-intensity oral anticoagulation with warfarin and lowdose aspirin in the primary prevention of ischaemic heart disease in men at increased risk. Lancet 1998; 351:233–41.

    Google Scholar 

  43. Iacoviello L., Donati M.B. Interpretation of Thrombosis Prevention Trial. Lancet 1998; 351: 1205.

    PubMed  CAS  Google Scholar 

  44. Jackson C.M. Physiology and biochemistry of prothrombin. In Haemostasis and Thrombosis. Bloom A, Forbes CD, Thomas DP, Tuddenham EGD eds. Edinburgh, UK Churchill Livingstone 1994; 397–438.

    Google Scholar 

  45. Poort S.R., Rosendaal F.R., Reitsma P.H., et al. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698–703.

    PubMed  CAS  Google Scholar 

  46. Hillarp A., Zö ller B., Svensson P.J., et al. The 20210 A allele of the prothrombin gene is a common risk factor among swedish outpatients with deep verified venous thrombosis. Thromb Haemost 1997; 78: 990–2.

    PubMed  CAS  Google Scholar 

  47. Arruda V.D., Bizzacchi J.M., Goncalves M.S., et al. Prevalence of the prothrombin gene variant (nt 2021OA) in venous thrombosis and arterial disease. Thromb Haemost 1997; 78: 1430–3.

    PubMed  CAS  Google Scholar 

  48. Vicente V., Gonzalez-Conejero R., Rivera J., et al. The prothrombin gene variant 20210A in venous and arterial thromboembolism. Haematologica 1999; 84:356–62.

    PubMed  CAS  Google Scholar 

  49. Martinelli I., Sacchi E., Landi G., et al. High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med. 1998; 338: 3562–5.

    Google Scholar 

  50. Rosendaal F.R., Doggen C.J., Zivelin A., et al: Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost 1998; 79:706–8.

    PubMed  CAS  Google Scholar 

  51. Soria H.M., Almasy L., Souto J.C., et al. Linkage analysis demonstrates that the prothrombin G20210A mutation jointly influences plasma prothrombin levels and the risk of thrombosis. Blood 2000; 95: 2780–5.

    PubMed  CAS  Google Scholar 

  52. MiJler G.J., Bauer K.A., Barzegar S., et al. Increased activation of the hemostatic system in men at high risk of fatal coronary heart disease. Thromb Haemost 1996; 75: 767–71.

    PubMed  CAS  Google Scholar 

  53. Franco R.F., Trip M.D., ten Cate H., et al. The 20210 G→ A mutation in the 3’untranslated region of the prothrombin gene and the risk for arterial thrombotic disease. Br J Haematol 1999; 104: 50–4.

    PubMed  CAS  Google Scholar 

  54. Watzke H.H., Schü ttrumpf J., Graf S., et al. Increased prevalence of a polymorphism in the gene co ding for human prothrombin in patients with coronary heart disease. Thromb Res 1997; 87:521–6.

    PubMed  CAS  Google Scholar 

  55. Doggen C.J.M., Cats V.M., Bertina R.M., et al. Interaction of coagulation defects and cardiovascular risk factors. Circulation 1998; 97: 1037–41.

    PubMed  CAS  Google Scholar 

  56. Rosendaal F.R., Siscovick D.S., Schwartz S.M., et al. A common prothrombin variant (20210 G to A) increases the risk of myocardial infarction in young women. Blood 1997; 90: 1747–50.

    PubMed  CAS  Google Scholar 

  57. Gardemann A., Arsic T., Katz N., et al. The factor II G20210A and factor V GI691A gene transitions and coronary heart disease. Thromb Haemost 1999; 81: 208–13.

    PubMed  CAS  Google Scholar 

  58. Ridker P.M., Hennekens C.H., Miletich J.P. G20210A mutation in prothrombin gene and risk of myocardial infarction, stroke,and venous thrombosis in a large cohort of US men. Circulation 1999; 99: 999–1004.

    PubMed  CAS  Google Scholar 

  59. Andreotti F., Burzotta F., De Stefano V., et al. The G20210A prothrombin mutation and the Physician’s Health Study. Ciculation 2000; 101: 207–8.

    Google Scholar 

  60. Russo C., Girelli D., Olivieri O., et al. The G20210A prothrombin gene polymorphism and prothrombin activity in subjects with or without angiographically documented coronary artery disease. Circulation 2001, in press.

    Google Scholar 

  61. Esmon C.T. Protein C: biochemistry, physyology, and clinical implications. Blood 1983; 62: 1155–8.

    PubMed  CAS  Google Scholar 

  62. Cripe L.D., Moore K.D., Kane W.H. Structure of the gene for human coagulation factor V. Biochemistry 1992; 31:3777–85.

    PubMed  CAS  Google Scholar 

  63. Bertina R.M., Koeleman B.P.C., Koster T., Rosendaal F.R., Dirven R.J., de Ronde H., van der Velden P.A., Reitsma P.H.: Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369:64.

    PubMed  CAS  Google Scholar 

  64. Svensson P.J., Dahlbä ck B.: Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994; 330:517.

    Google Scholar 

  65. Nicolaes G.A.F., Tans G., Thomassen M.C.L.G.D., et al. Peptide bond cleavages and 10ss of functional activity during inactivation offactor Va and factor Va R506Q by activated protein C. J Biol Chem. 1995; 270:158.

    Google Scholar 

  66. Rosing J., Hoekema L., Nicolaes G.A.F., et al. Effects of protein Sand factor Xa on peptide bond cleavages during inactivation offactor Va and factor Va R506Q by activated protein C. J Biol Chem. 1995; 270:852.

    Google Scholar 

  67. Zivelin A., Griffin J.H., Xu X., et al. A single genetic origin for a common Caucasian risk factor for venous thrombosis. Bl00d. 1997; 89:397.

    CAS  Google Scholar 

  68. Ridker P.M., Hennekens C.H., Lindpaintner K., Stampfer M.J., Eisenberg P.R., Miletich J.P. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction. N Engl J Med. 1995; 332:912.

    Google Scholar 

  69. Ferraresi P., Marchetti G., Legnani C., et al. The heterozygous 20210 G/A prothrombin genotype is associated with early venous thrombophilias and is not increased in frequency in arterial disease. Arterioscler Thromb Vasc Biol. 1997; 17:2418.

    PubMed  CAS  Google Scholar 

  70. Emmerich J., Poirier O., Evans A., et al. Myocardial infarction, Arg 506 to Gin factor V mutation, and activated protein C resistance. Lancet. 1995; 345:321.

    Google Scholar 

  71. Ardissino D., Peyvandi F., Merlini P.A., Colombi E., Mannucci P.M. Factor V (Arg506 to GIn) mutation in young survivors ofmyocardial infarction. Thromb Haemost. 1996; 75:701.

    PubMed  CAS  Google Scholar 

  72. Cushman M., Rosendaal F.R., Psaty B.M., et al. Factor V Leiden is not a risk factor for arterial vascular disease in the elderly: results from the Cardiovascular Health Study. Thromb Haemost. 1998; 79:912.

    PubMed  CAS  Google Scholar 

  73. Catto A., Carter A., Ireland H., et al. Factor V Leiden gene mutation and thrombin generation in relation to acute stroke. Arterioscler Thromb Vasc Biol. 1995; 15:783.

    PubMed  CAS  Google Scholar 

  74. Longstreth W.T., Rosendaal F.R., Siscovick D.S., et al. Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G2021OA). Stroke. 1998; 29:577.

    PubMed  Google Scholar 

  75. de Visser M.C.H., Rosendaal F.R., Bertina R.M. A reduced sensitivity for activated protein C in the absence of factor V Leiden increases the risk of venous thrombosis. Blood 1999; 93:1271–6.

    PubMed  Google Scholar 

  76. Cumming A.M., Tait R.C., Fildes S., Yoong A., Keeney S., Hay C.R.M.: Devel0pment of resistance to activated protein C during pregnancy. Br J Haematol 1995; 90:725.

    PubMed  CAS  Google Scholar 

  77. Olivieri O., Friso S., Manzato F., Guella A., Bemardi F., Lunghi B., Girelli D., Azzini M., Brocco G. Russo C., Corrocher R.: Resistance to activated protein C in healthy women taking oral contraceptives. Br J Haematol 1995; 91:465.

    PubMed  CAS  Google Scholar 

  78. Ehrenforth S., Radtke K.P., Scharrer I.: Acquired activated protein C-resistance in patients with lupus anticoagu1ants. Thromb Haemost 1995; 74:797.

    PubMed  CAS  Google Scholar 

  79. Henkens C.M.A., Born V.J.J., van der Meer J.: Lowered APC-sensitivity ratio re1ated to increased factor VIII-clotting activity. Thromb Haemost 1995; 74: 1198.

    PubMed  CAS  Google Scholar 

  80. Laffan M.A., Manning R.: The influence of factor VIII on measurement of activated protein C resistance. Blood Coagul Fibrinolysis 1996; 7:761.

    PubMed  CAS  Google Scholar 

  81. Kiechl S., Muigg A., Santer P., et al. Poor response to activated protein C as a prominent risk predictor of advanced arterial disease. Circulation. 1999; 99:614.

    PubMed  CAS  Google Scholar 

  82. Lunghi B., Iacoviello L., Gemmati D., Dilasio M.G., Castoldi E, Pinotti M., Castaman G., Redaelli R., Mariani G., Marchetti G., Bemardi F. Detection of new polymorphic markers in the factor V gene: association with factor V levels in plasma. Thromb Haemost 1996; 75:45–48.

    PubMed  CAS  Google Scholar 

  83. Faioni EM. Factor V HR2: an ancient haplotype out of Africa. Reasons for being interested. Thromb Haemost 2000; 83: 358–359.

    CAS  Google Scholar 

  84. Bemardi F., Faioni E., Castoldi E., Lunghi B., Castaman G., Sacchi E., Mannucci P.M. A factor V genetic component differing from factor V R506Q contributes to the activated protein C resistance phenotype. Blood 1997; 90: 1552–7.

    Google Scholar 

  85. Rosing J., Bakker H.M., Thomassen M., Hemker H.C., Tans G. Characterization of two forms of human factor Va with different co factor activities. J Biol Chem 1993; 268:21130–6.

    PubMed  CAS  Google Scholar 

  86. Castoldi E., Rosing J., Girelli D., Hoekema L., Lunghi B., Mingozzi F., Ferraresi P., Friso S., Corrocher R., Tans G., Bemardi F. Mutations in the R2 FV gene affect the ratio between the two FV isoforms in plasma. Thrombosis and Haemostasis 2000; 83:362–5.

    PubMed  CAS  Google Scholar 

  87. Hoekema L, Castoldi E, Tans G, Girelli D, Gemmati D, Bemardi F, Rosing J. Functional properties of factor V and factor Va encoded by the R2-gene. Thrombosis and Haemostasis 2001; 85:75–81.

    PubMed  CAS  Google Scholar 

  88. Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood 1987; 69:381–7.

    PubMed  CAS  Google Scholar 

  89. Kruithof EKO. Plasminogen activator inhibitors. A review. Enzyme 1988; 40: 113–21.

    CAS  Google Scholar 

  90. Lupu F, Bergonzelli GE, Heim DA, et al. Localization and production of plasminogen activator inhibitor-l in human healthy and atherosclerotic arteries. Arterioscler Thromb. 1993; 13: 1090–100.

    PubMed  CAS  Google Scholar 

  91. Sobel BE, Woodcock-Mitchell J, Schneider DJ, Holt RE, Marutsuka K, Gold H. Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with non-diabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation. 1998; 97:2213–21.

    PubMed  CAS  Google Scholar 

  92. Hamsten A, de Faire U, Walldius G, et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987; 2:3–9.

    PubMed  CAS  Google Scholar 

  93. Juhan-Vague I, Pyke SDM, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. Circulation 1996; 94:2057–63.

    PubMed  CAS  Google Scholar 

  94. Margaglione M, Di Minno G, Grandone E, et al. Abnormally high circulation levels of tissue plasminogen activator and plasminogen activator inhibitor-1 in patients with a history of ischemic stroke. Arterioscler Thromb. 1994; 14: 1741–5.

    Google Scholar 

  95. Thogersen AM, Jansson JH, Boman K, et al. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation. 1998; 98:2241–7.

    PubMed  CAS  Google Scholar 

  96. Juhan-Vague I, Alessi MC, Vague P. Increased plasma plasminogen activator inhibitor 1 levels: a possible link between insulin resistance and atherothrombosis. Diabetologia. 1991; 34:457–62.

    PubMed  CAS  Google Scholar 

  97. Juhan-Vague I, Thompson SG, Jespersen J, on behalf of the ECAT Angina Pectoris Study Group I. Involvement of the hemostatie system in the insulin resistanee syndrome: a study of 1,500 patients with angina pectoris. Arterioscler Thromb. 1993; 13:1865–73.

    PubMed  CAS  Google Scholar 

  98. Henry M, Tregouet DA, Alessi MC, et al. Metabolic determinants are mueh more important than genetic polymorphisms in determining the PAI-l activity and antigen plasma eoneentrations: a family study with part of the Stanislas Cohort. Arterioscler Thromb Vasc Biol. 1998; 18:84–91.

    PubMed  CAS  Google Scholar 

  99. Strandberg L, Lawrence D, Ny T. The organization of the human-plasminogen-activator-inhibitor-l gene: implications on the evolution of the serine-protease inhibitor family. Eur J Biochem 1988; 176:609–16.

    PubMed  CAS  Google Scholar 

  100. Dawson S.J, Wiman B, Hamsten A, Green F, Humphries S, Henney AM. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor (P AI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem. 1993; 268:739–45.

    Google Scholar 

  101. Eriksson P, Kallin B, van’t Hooft FM, Bavenholm P, Hamsten A. Allele-specific increase in basal transeription of the plasminogen-activator inhibitor I gene is associated with myocardial infaretion. Proc Natl Acad Sci V S A 1995; 92:1851–5.

    CAS  Google Scholar 

  102. Ossei-Geming N, Mansfield M.W, Stiekland M.H, Wilson I.J, Grant P.J. Plasminogen activator inhibitor-I (PAI-I) promoter 4G/5G genotype and levels in relation to a history myocardial infaretion in patients eharacterised by coronary angiography. Arterioscler Thromb Vasc Biol. 1997; 17:33–7.

    Google Scholar 

  103. Margaglione M, Cappucci G, Colaizzo D, et al. The PAI-I gene loeus 4G/5G polymorphism is associated with a family history of coronary artery disease. Arterioscler Thromb Vasc Biol 1998; 18: 152–6.

    PubMed  CAS  Google Scholar 

  104. Gardemann A, Lohre J, Katz N, Tillmanns H, Hehrlein FW, Haberboseh W. The 4G4G genotype of the plasminogen activator inhibitor 4G/5G gene polymorphism is associated with eoronary atherosclerosis in patients at high risk for this disease. Thromb Haemost 1999; 82:1121–6.

    PubMed  CAS  Google Scholar 

  105. Ye S, Green F.R, Searabin P.Y, et al. The 4G/5G genetic polymorphism in the promoter of the plasminogen activator inhibitor-I (PAl-I) gene is associated with differences in plasma PAl-I activity but not with risk of myocardial infarction in the ECTIM study. Thromb Haemost.1995; 74:837–41.

    PubMed  CAS  Google Scholar 

  106. Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Miletich JP. Arterial and venous thrombosis is not associated with the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor gene in a large cohort ofVS men. Circulation. 1997; 95:59–62.

    PubMed  CAS  Google Scholar 

  107. Doggen C.J.M, Bertina R.M, Manger Cats V, Reitsma PH, Rosendaal FR. The 4G/5G polymorphism in the plasminogen activator inhibitor-I gene is not associated with myocardial infarction. Thromb Haemost. 1999; 82: 115–20.

    PubMed  CAS  Google Scholar 

  108. Iacoviello L, Burzotta F, Di Castelnuovo A, Zito F, Marchioli R, Donati MB. The 4G/5G polymorphism of P Al-I promoter gene and the risk of myocardial infarction: a meta-analysis. Thromb Haemost. 1998; 80: 1029–30.

    PubMed  CAS  Google Scholar 

  109. Eriksson P, Nilsson L, Karpe F, Hamsten A. Very-Iow-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-I gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 1998; 18:20–6.

    PubMed  CAS  Google Scholar 

  110. Sironi L, Mussoni L, Prati L, et al. Plasminogen activator inhibitor type-I synthesis and mRNA expression in HepG2 cells are regulated by VLDL. Arterioscler Thromb Vasc Biol 1996; 16:89–96.

    PubMed  CAS  Google Scholar 

  111. Ichinose A. The physiology and bioehemistry of factor XIII. In: Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD, eds. Haemostasis and Thrombosis. 3rd ed. Edinburgh: Churchill Livingstone; 1994:53.

    Google Scholar 

  112. Kohler H.P, Stickland M.H, Ossei-Geming N, Carter A, Mikkola H, Grant PJ. Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 1998; 79:8–13.

    PubMed  CAS  Google Scholar 

  113. Wartiovaara V, Perola M, Mikkola H, et al. Association of FXIII Val34Leu with decreased risk of myocardial infarction in Finnish males. Atherosclerosis 1999; 142:295–300.

    PubMed  CAS  Google Scholar 

  114. Kohler H.P, Mansfield M.W, Clark P.S, Grant P.I. Interaction between insulin resistance and factor XIIII Val34Leu in patients with coronary heart disease. Thromb Haemost.1999; 82:1202–3.

    PubMed  CAS  Google Scholar 

  115. Peersehke EIB, Lopez JA. Platelet membranes and receptors. In:Loscalzo J,Schafer Al, eds. Thrombosis and Hemorrhage. 2nd ed. Baltimore: Williams & Wilkins; 1998:229.

    Google Scholar 

  116. Ruggeri Z.M. New insights into the mechanisms of platelet adhesion and aggregation. Semin Hematol. 1994; 31:229–39.

    PubMed  CAS  Google Scholar 

  117. Newman P.J. Platelet alloantigens: cardiovascular as well as immunological risk factors. Lancet. 1997; 349:370–1.

    PubMed  CAS  Google Scholar 

  118. Goodall A.R, Curzen N, Panesar M, et al. Increased binding of fibrinogen to glycoprotein IIIaproline33 (HPA-Ib, Pla2, Zwb) positive platelets in patients with cardiovascular disease. Eur HeartJ 1999; 20:742–7.

    CAS  Google Scholar 

  119. Feng D.L, Lindpaintner K, Larson M.G, et al. Increased p1atelet aggregability associated with platelet GPIIIa Pla2 polymorphism. The Framingham Offspring study. Arterioscler Thromb Vasc Biol 1999; 19: 1142–7.

    CAS  Google Scholar 

  120. Weiss E.J, Bray P.F, Tayback M, et al. A polymorphism ofa platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med. 1996; 334:1090–4.

    PubMed  CAS  Google Scholar 

  121. Zotz R.B, Winkelmann B.R, Nauck M, et al. Polymorphism of platelet membrane glycoprotein IIIa: human platelet antigen Ib (HPA-Ib/PIA2) is an inherited risk factor for premature myocardial infarction in coronary artery disease. Thromb Haemost. 1998; 79:731–5.

    PubMed  CAS  Google Scholar 

  122. Ardissino D, Mannucci P.M, Merlini P.A, et al. Prothrombotic genetic risk factors in young survivors of myocardial infarction. Blood. 1999; 94:46–51.

    PubMed  CAS  Google Scholar 

  123. Ridker P.M, Hennekens C.H, Schmitz C, Stampfer M.J, Lindpaintner K. P1A1/A2 polymorphism of platelet glycoprotein lIla and risks of myocardial infarction, stroke and venous thrombosis. Lancet. 1997; 349:385–8.

    PubMed  CAS  Google Scholar 

  124. Herrmann S.M, Poirier O, Marques-Vidal P, et al. The Leu 33/Pro polymorphism (P1A1/P1A2) of the glycoprotein IIIa (GPIIIa) receptor is not related to myocardial infarction in the ECTIM Study. Thomb Haemost. 1997; 77: 1179–81.

    CAS  Google Scholar 

  125. Carter A.M, Ossei-Geming N, Wilson I.J, Grant P.J. Association of the platelet PI(A) polymorphism of glycoprotein IIb/lIla and the fibrinogen Bb448 polymorphism with myocardial infarction and extent of coronary artery disease. Circulation. 1997; 96:1424–31.

    PubMed  CAS  Google Scholar 

  126. Durante-Mangoni E, Davies G.J, Ahmed N, Ruggiero G, Tuddenham E.G. Coronary thrombosis and the platelet glycoprotein lIlA gene PIA2 polymorphism. Thromb Haemost. 1998; 80:218–9.

    PubMed  CAS  Google Scholar 

  127. Walter D.H, Schachinger V, Eisner M, Dimmeler S, Zeiher A.M. Platelet glycoprotein lIla polymorphisms and risk of coronary stent thrombosis. Lancet. 1997; 350: 1217–9.

    PubMed  CAS  Google Scholar 

  128. Mamotte C.D, van Bockxmeer F.M, Taylor R.R. PIAI/A2 polymorphism of glycoprotein IIIa and risk of coronary artery disease and restenosis following coronary angioplasty. Am J Cardiol. 1998; 82:13–6.

    PubMed  CAS  Google Scholar 

  129. Andrews R.K, Shen Y, Gardiner E.E, Dong J.F, Lopez J.A, Bemdt MC. The glycoprotein Ib-IXV complex in platelet adhesion and signaling. Thromb Haemost. 1999; 82:357–64.

    PubMed  CAS  Google Scholar 

  130. Gonzalez-Conejero R, Lozano M.L, Rivera J, et al. Polymorphisms of platelet membrane glycoprotein Iba associated with arterial thrombotic disease. Blood. 1998; 92:2771–6.

    PubMed  CAS  Google Scholar 

  131. Moroi M, Jung S.M, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin lnvest.1989; 84:1440–5.

    CAS  Google Scholar 

  132. Nieuwenhuis H.K, Akkerman J.W.N, Houdijk W.P.M, Sixma JJ. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature. 1985; 318:470–2.

    PubMed  CAS  Google Scholar 

  133. Kunicki T.L., Orchekowski R, Annis D, Honda Y. Variability of integrin a2 b1 activityon human platelets. Blood. 1993; 82:2693–703.

    PubMed  CAS  Google Scholar 

  134. Santoso S, Kunicki T.L, Kroll H, Haberbosch W, Gardemann A. Association of the platelet glycoprotein Ia C807T gene polymorphism with nonfatal myocardial infarction in younger patients. Blood. 1999; 93:2449.

    PubMed  CAS  Google Scholar 

  135. Croft S.A, Hampton K.K, Sorrell J.A, et al. The GpIa C807T dimorphism associated with platelet collagen receptor density is not a risk factor for myocardial infarction. Br J Haematol.1999; 106:771.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Girelli, D., Olivieri, O., Corrocher, R. (2001). Genetic Markers of Hemostatic Factors. In: Doevendans, P.A., Wilde, A.A.M. (eds) Cardiovascular Genetics for Clinicians. Developments in Cardiovascular Medicine, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1019-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1019-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3888-1

  • Online ISBN: 978-94-010-1019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics