Skip to main content

Abstract

Although oxygen has been present in the atmosphere for 5 billion years, it is believed that its concentration was infinitesimal until 2.5 billion years ago, when the first photosynthetic organisms appeared [1, 2]. The gradual increment of oxygen atmospheric concentration allowed further evolution for the animal species depending on an aerobic metabolism by enhancing the survival of those forms that had better protection against the increasing oxidative stress of the changing atmosphere [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkner LV, Marshall LC (1964) The history of oxygenic concentration in the earth’s atmosphere. Faraday Discuss Chem Soc 37: 112

    Article  Google Scholar 

  2. Shanklin DR (1969) A general theory of oxygen toxicity in man. Perspect Biol Med 13: 80

    PubMed  CAS  Google Scholar 

  3. Frank L, Massaro D (1980) Oxygen toxicity. Am J Med 69: 117–126

    Article  PubMed  CAS  Google Scholar 

  4. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond 147: 332–351

    Article  CAS  Google Scholar 

  5. McCord JM, Fridovich J (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049–6055

    PubMed  CAS  Google Scholar 

  6. Fridovich J (1978) The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity; superoxide dismutase provides an important defence. Science 201: 875–880

    Article  PubMed  CAS  Google Scholar 

  7. De Martino G, Abate C, Monti R (1991) La tossicità dell’ossigeno. Minerva Anestesiol 57: 221–230

    PubMed  Google Scholar 

  8. Freeman BA, Crapo JD (1982) Biology of disease. Free radicals and tissue injury. Lab Invest 47: 412–426

    PubMed  CAS  Google Scholar 

  9. Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1: 358–364

    PubMed  CAS  Google Scholar 

  10. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1986) Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77: 1312–1320

    Article  PubMed  CAS  Google Scholar 

  11. Slater TF (1984) Free-radical mechanisms in tissue injury. Biochem J 222: 1–15

    PubMed  CAS  Google Scholar 

  12. Davies KJA, Lin SW, Pacifici RE (1987) Protein damage and degradation by oxygen radicals. J Biol Chem 262: 9914–9920

    PubMed  CAS  Google Scholar 

  13. Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, London

    Google Scholar 

  14. De Martino G et al. (1991) La filtrazione eritrocitaria nella valutazione del danno da radicali in ossigenoterapia iperbarica. Minerva Anestesiol 57: 970–971

    PubMed  Google Scholar 

  15. De Martino G, Luchetti M, De Rosa RC, Ventriglia G (1993) Il sangue e l’ossigeno iperbarico. Minerva Anestesiol 59 (Suppl 1 ): 443–446

    Google Scholar 

  16. Davies KJA, Goldberg AL (1987) Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. J Biol Chem 17: 8220–8226

    Google Scholar 

  17. Ventriglia G, Luchetti M, Monti R, Naimoli R, De Martino G (1992) Pentossifillina ed anti-ossidanti: effetti sulla filtrazione eritrocitaria in soggetti vasculopatici sottoposti ad ossigenoterapia iperbarica. Minerva Anestesiol 58 (Suppl 1): 673–674

    Google Scholar 

  18. Bert P (1877) La pression barometrique, recherches de physiologie experimental. Masson, Paris

    Google Scholar 

  19. Gershman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisoning and X-ray irradiation: a mechanism is common. Science 199: 623–626

    Article  Google Scholar 

  20. Zircle LG, Mengel CE, Horton BD, Duffy EJ (1965) Studies of oxygen toxicity in the central nervous system Aerospace Med 36: 1027–1032

    Google Scholar 

  21. Jerret SA, Jefferson D, Mengel CE (1973) Seizures, H2O2 formation and lipid peroxides in brain during exposure to oxygen under high pressure. Aerospace Med 44: 40–44

    Google Scholar 

  22. Sinet PM, Heikkila RE, Cohen G (1980) Hydrogen peroxide production by rat brain in vivo. J Neurochem 34: 1421–1428

    Article  PubMed  CAS  Google Scholar 

  23. Yusa T, Crapo JD, Freeman BA (1984) Liposome-mediated augmentation of brain SOD and catalase inhibits CNS 02 toxicity. J Appl Physiol 57: 1674–1681

    PubMed  CAS  Google Scholar 

  24. Balentine JD, Gutsche BB (1966) Central nervous system lesions in rats exposed to oxygen at high pressure. J Am Pathol 48: 107–127

    CAS  Google Scholar 

  25. Schnakenburg K, Nolte H (1973) Results of electron microscopic studies in the rat brain under oxygen at high pressure. Aerospace Med 44: 259–264

    Google Scholar 

  26. Bean JW, Lignell J, Burgess DW (1972) Cerebral O2, CO2, regional cerebral vascular control and hyperbaric oxygenation. J Appl Physiol 32: 650–657

    PubMed  CAS  Google Scholar 

  27. Ogilvie RW, Balentine JD (1976) Pathophysiology of selective vulnerability of the central nervous system to hyperoxia. J Neuropathol Exp Neurol 35: 301

    Article  Google Scholar 

  28. Perot PLJ, Stein SN, Sommenschein RR (1953) Relation of cortical pH to hyperoxic convulsions. Am J Physiol 173: 158–160

    PubMed  CAS  Google Scholar 

  29. Davies HC, Davies RE (1965) Biomedical aspects of oxygen poisoning. In: Fenn WO, Rahn H (eds) Handbook of physiology, vol 2 (Sect 3 ): respiration. American Physiology Society, Washington, pp 1047–1058

    Google Scholar 

  30. Joanny P, Corriol J, Brue F (1970) Hyperbaric oxygen: effects on metabolism and ionic movement in cerebral cortex slices. Science 167: 1508–1510

    Article  PubMed  CAS  Google Scholar 

  31. Wood JD (1980) GABA and oxygen toxicity: a review. Brain Res Bull 5: 770–780

    Google Scholar 

  32. Donald KW (1947) Oxygen poisoning in man Parts I and II. Br Med J 1: 667–672, 712–717

    Google Scholar 

  33. Torbati D (1986) Central nervous system glucose utilisation rate during oxygen induced respiratory changes at 2 atmospheres oxygen in the rat. J Neurol Sci 76: 231–237

    Article  PubMed  CAS  Google Scholar 

  34. Clark JM, Lambertsen CJ (1971) Pulmonary oxygen toxicity: a review. Pharmacol rev: 23: 37–133

    PubMed  CAS  Google Scholar 

  35. Behnke AR, Fenmore SJ, Poppen JR, Motley EP (1935) The effect of oxygen on man at pressures from 1 to 4 atmospheres. Am J Physiol 110: 565–572

    CAS  Google Scholar 

  36. Reshef A, Bitterman N, Kerem D (1991) The effect of carbamazepine and ethosuximide on hyperbaric seizures. Epilepsy Res 8: 117–121

    Article  PubMed  CAS  Google Scholar 

  37. Clark JM (1974) The toxicity of oxygen. Am Rev Respir Dis (Suppl) 110: 40–50

    CAS  Google Scholar 

  38. Fischer B, Jain KK, Braun E, Lehrl S (1988) Handbook of hyperbaric oxygen therapy. Springer, Berlin Heidelberg New York Oxygen Toxicity pp 35–46

    Google Scholar 

  39. Lin Y, Jamieson D (1993) Effect of humidity on hyperoxic toxicity. J Appl Physiol 75:1980–1983

    PubMed  CAS  Google Scholar 

  40. Hengyi T, Goutan N (1990) Changes of immunoreacitve beta-endorphin in plasma, pituitary and hypothalamus of rats during oxygen-induced convulsions. Proceedings of the loth International Congress on Hyperbaric Medicine, Amsterdam, pp 60–64.

    Google Scholar 

  41. Guotan NIT, Tao HY, Cheng T (1991) Effects of some peptide transmitters on oxygen convulsions in rats. International Society of Hyperbaric Medicine 5th Symposium, World Meeting of Hyperbaric Medicine, Capri, Italy, p. 19

    Google Scholar 

  42. Mialon P, Barthelemy L (1991) The influence of one hyperbaric oxygen-induced seizure on brain eicosanoid content. Mol Chem Neuropathol 15: 1–11

    Article  PubMed  CAS  Google Scholar 

  43. Jacobson JM, Michael JR, Meyers RA, Bradley MB, Sciuto AM, Gurtner GH (1992) Hyperbaric oxygen toxicity: role of thromboxane. J Appl Physiol 72: 416–422

    PubMed  CAS  Google Scholar 

  44. Bertelli A, Giovannini L, Mian M, Spaggiari PG (1990) Protective action of propionyl 14-carnitine on toxicity induced by hyperbaric oxygen. Drugs Exp Clin Res 16: 527–530

    PubMed  CAS  Google Scholar 

  45. Tsan MF, Lee CY, White JE (1991) Interleukin-1 protects rats against oxygen toxicity. J Appl Physiol 71: 688–697

    PubMed  CAS  Google Scholar 

  46. White CW, Ghezzi P (1989) Protection against pulmonary oxygen toxicity by interleukin-i and tumor necrosis factor: role of antioxidant enzymes and effect of cyclooxygenase inhibitors. Biotherapy 1: 361–367

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Piantadosi CA (1991) Prevention of H202 generation by monoamine oxidase protects against CNS 02 toxicity. J Appl Physiol 71: 1057–1061

    PubMed  CAS  Google Scholar 

  48. Zhang J, Su Y, Oury TD, Piantadosi CA (1993) Cerebral amino acid, norepinephrine and nitric oxide metabolism in CNS oxygen toxicity. Brain Res 606: 56–62

    Article  PubMed  CAS  Google Scholar 

  49. Enokido Y, Hatanaka H (1990) High oxygen atmosphere for neuronal cell culture with nerve growth factor. II. Survival and growth of clonal rat pheochromocytoma PC12h cells. Brain Res 536: 23–29

    Article  PubMed  CAS  Google Scholar 

  50. Enokido Y, Akaneya Y, Niinobe M, Mikoshiba K, Hatanaka H (1992) Basic fibroblast growth factor rescues CNS neurons from cell death caused by high oxygen atmosphere in culture. Brain Res 599: 261–271

    Article  PubMed  CAS  Google Scholar 

  51. Marcho Z, White JE, Higgins PJ, Tsan MF (1991) Tumor necrosis factor enhances endothelial cell susceptibility to oxygen toxicity: role of glutathione. Am J Respir Cell Mol Biol 5: 556–562

    PubMed  CAS  Google Scholar 

  52. Jensen JC, Pogrebniak HW, Pass HI et al. (1992) Role of tumor necrosis factor in oxygen toxicity. J Appl Physiol 72: 1902–1907

    PubMed  CAS  Google Scholar 

  53. Boadi WY, Thaire L, Kerem D, Yannai S (1991) Effects of dietary supplementation with vitamin E, riboflavin and selenium on central nervous system oxygen toxicity. Pharmacol Toxicol 68: 77–82

    Article  PubMed  CAS  Google Scholar 

  54. Smith Lorrain J (1899) The pathological effects due to increase of oxygen tension in the air breathed. J Physiol (London) 24: 19–35

    CAS  Google Scholar 

  55. Katzenstein AL (1976) Diffuse alveolar damage–the role of oxygen, shock and related factors, Am J Pathol 85: 210–214

    Google Scholar 

  56. Butler BD, Hills BA (1986) Effect of excessive oxygen upon the capability of the lung to filter gas emboli. Dept of Occupational Medicine; University of Dundee, Scotland 1: 123–135

    Google Scholar 

  57. Gross NJ, Smith DM (1984) Methylprednisolone increases the toxicity of oxygen in adult mice Am Rev Resp Dis 129: 805–809

    CAS  Google Scholar 

  58. Ortolani Q, De Martino G (1987) Oxygen free radical damage on coagulative and respiratory apparatus in critical patient. Bull Soc It Biol Sper 63 (2): 1173–1179

    CAS  Google Scholar 

  59. De Martino G, Ortolani Q (1988) Oxygen damage prevention and protection during hyperbaric oxygen therapy. Bull Soc It Biol Sper 64 (19): 69–76

    Google Scholar 

  60. Clark JM, Lambertsen CJ (1971) Rate of development of pulmonary O2 toxicity in man during oxygen breathing at 2.0 ATA J Applied Physiol 30: 739–752

    Google Scholar 

  61. Lambertsen CJ, Clark B (1965) Medical implications of high oxygen pressure Trans Stud Coll Phys Phil 33: 1–18

    CAS  Google Scholar 

  62. Donald KW (1947) Oxygen poisoning in man. Part I and Part II BMR May 17–24: 667–672 (I) and 712–717 (II)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

De Martino, G., Luchetti, M., De Rosa, R.C., Marroni, A., Oriani, G., Longoni, C. (1996). Toxic Effects of Oxygen. In: Oriani, G., Marroni, A., Wattel, F. (eds) Handbook on Hyperbaric Medicine. Springer, Milano. https://doi.org/10.1007/978-88-470-2198-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2198-3_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2200-3

  • Online ISBN: 978-88-470-2198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics