Skip to main content

Physiological Principles of Hyperbaric Oxygenation

  • Chapter
Handbook on Hyperbaric Medicine

Abstract

Hyperbaric oxygen therapy (HBO) entails exposure of the whole body to increased atmospheric pressure usually between 2 and 3 atmospheres (atm abs) while breathing pure oxygen or oxygen-enriched gas mixtures. The therapeutic use of 100% O2 at pressures exceeding 3 atm abs is limited, because it is frequently accompanied by rapid onset, in minutes, of neurological symptoms, leading to seizures and loss of consciousness. Neurological toxicity sharply limits the upper limits of inspired oxygen partial pressures to 2000 mmHg. The therapeutic use of exposure pressures higher than 3 atm abs, while breathing helium-oxygen (Heliox) or nitrogen-oxygen (Nitrox) mixtures, does not appear to have significant clinical advantages over the exposure of 3 atm abs. A low limit for therapeutic oxygenation is exposure to oxygen-enriched air at i atm abs (ambient pressure), as is routinely used in the hospital setting. Clinical experience has shown that significant therapeutic results appear at 1.6–1.8 atm abs oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moon RE, Camporesi EM, Shelton DI (1987) Prediction of arterial PO2 during hyperbaric oxygenation. Proceedings of the Ninth International Symposium on Underwater and Hyperbaric Physiology. Undersea and Hyperbaric Medical Society, Bethesda, Maryland, pp 1127–1131

    Google Scholar 

  2. Kitamura H, Sawa T, Ikenzono E (1972) Postoperative hypoxemia: the contribution of age to the maldistribution of ventilation. Anesthesiology 36: 244–252

    Article  PubMed  CAS  Google Scholar 

  3. Kilmartin JV, Rossi-Bernardi L (1973) Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates. Physiol Rev 53: 836–890

    PubMed  CAS  Google Scholar 

  4. Jain KK (1990) Textbook of hyperbaric medicine. Physical, physiological and biochemical Aspects of hyperbaric oxygenation. Hogrefe and Huber, Toronto, pp 11–25

    Google Scholar 

  5. Nunn JF (1987) Applied respiratory physiology 3rdn. ed Hyperoxia and oxygen toxicity. Butterworths, London, pp 478–482

    Google Scholar 

  6. Davis JC (1991) Enhancement of healing. In: Camporesi EM, Barker AC (eds) Hyperbaric oxygen therapy: a critical review. Undersea and Hyperbaric Medical Society, Bethesda, Maryland pp 127–140

    Google Scholar 

  7. Saltzman HA, Smith WW, Fuson RL (1965) Hyperbaric oxygenation. Monogr Surg Sci 2: 1–68

    PubMed  CAS  Google Scholar 

  8. Krogh A (1959) The anatomy and physiology of capillaries. Hatner, New York

    Google Scholar 

  9. Kreuzer F (1982) Oxygen supply to tissues: the Krogh model and its assumptions. Experientia 38: 1415–1426

    Article  PubMed  CAS  Google Scholar 

  10. Popel AS (1989) Theory of oxygen transport to tissue. Crit Rev Biomed Eng 17: 257–321

    PubMed  CAS  Google Scholar 

  11. Ellsworth ML, Ellis CG, Popel AS, Pittman RN (1994) Role of microvessels in oxygen supply to tissue. News Physiol Sci 9: 119–123

    Google Scholar 

  12. Duling BR, Berne RM (1970) Longitudinal gradients in periarteriolar oxygen tension: a possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27: 669–678

    PubMed  CAS  Google Scholar 

  13. Duling BR, Kuschinsky W, Wahl M (1979) Measurements of the perivascular P02 in the vicinity of the pial vessels in the cat. Pflugers Arch 383: 29–34

    Article  PubMed  CAS  Google Scholar 

  14. Ivanov KP, Derii AN, Samoilov MO, Semenov DG (1982) Diffusion of oxygen from the smallest arteries of the brain. Pflugers Arch 393: 118–120

    Article  PubMed  CAS  Google Scholar 

  15. Kuo L, Pittman RN (1988) Effect of hemodilution on oxygen transport in arteriolar networks of hamster striated muscle. Am J Physiol 254: H331- H339

    PubMed  CAS  Google Scholar 

  16. Stein JC, Ellis CG, Ellsworth ML (1993) Relationship between capillary and systemic venous PO2 during nonhypoxic and hypoxic ventilation. Am J Physiol 265:H537- H542

    PubMed  CAS  Google Scholar 

  17. Salzano JV, Camporesi EM, Stolp BW, Moon RE (1984) Physiological response to exercise at 47 and 66 ATA. J Appl Physiol 57: 1055–1068

    PubMed  CAS  Google Scholar 

  18. Moon RE, Camporesi EM (1994) Respiratory monitoring. In: Anesthesia Miller RD (ed.) Churchill Livingstone, London, p 1253–1291

    Google Scholar 

  19. Whalen RE, Saltzmann HA, Holloway DH (1965) Cardiovascular and blood gas responses to hyperbaric oxygenation. Am J Cardiol 15: 638–646

    Article  PubMed  CAS  Google Scholar 

  20. Savitt MA, Rankin JS, Elbeery JR, Owen CH, Camporesi EM (1994) Influence of hyperbaric oxygen on left ventricular contractility, total coronary blood flow, and myocardial oxygen consumption in the conscious dog. Undersea Hyperb Med 21: 169–183

    PubMed  CAS  Google Scholar 

  21. Klein J (1990) Normobaric pulmonary oxygen toxicity. Anesth Analg 70: 195–207

    Article  PubMed  CAS  Google Scholar 

  22. Phelps DL (1993) Retinopathy of prematurity, Pediatr Clin North Am 40:705–714

    PubMed  CAS  Google Scholar 

  23. Huch R, Lubbers DW, Huch A (1977) Quantitative continuous measurement of partial oxygen pressure on the skin of adults and new-born babies. Pflugers Arch Eur J Physiol 337 (3): 185–198

    Google Scholar 

  24. Ellsworth ML, Pittman RN (1990) Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 258: H1240- H1243

    PubMed  CAS  Google Scholar 

  25. Grunewald WA, Lubbers DW (1976) Cryomicrophotometry as a method for analyzing the intracapillary HbO2 saturation of organs under different O2 supply conditions. Adv Exp Med Bio 175: 55–64

    Google Scholar 

  26. Fenton BM, Gayeski TE (1990) Determination of microvascular oxyhemoglobin saturations using cryospectrophotometry. Am J Physiol 259 (6): H1912 - H1920

    PubMed  CAS  Google Scholar 

  27. Hampson NB, Camporesi EM, Stolp BW, Moon RE, Shook JE, Griebel JA, Piantadosi CA (1990) Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans. Brain redox state during hypoxia. J Appl Physiol 63: 907–913

    Google Scholar 

  28. Mascia MF, McGraw DJ, Camporesi EM (1994) The use of near infrared cerebral oxymetry in awake carotid endarterectomy. Anesthesiology (Suppl) 81 (3A): A532

    Google Scholar 

  29. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Energy conversion in mitochondria and chloroplasts. In: Molecular biology of the cell, 2nd edn. Garland Publishing New York, London, pp 341

    Google Scholar 

  30. Hu H, Sosnovsky G, Swartz HM (1992) Simultaneous measurements of the intra-and extra-cellular oxygen concentration in viable cells. Biochim Biophys Acta 1112: 161–166

    Article  PubMed  CAS  Google Scholar 

  31. Fife CE, Camporesi EM (1991) Physiologic effects of hyperbaric hyperoxia. Problems in respiratory care. 4 (2): 142–149

    Google Scholar 

  32. Bloor BM, Fricker J, Hellinger F, Nishioka H, McCutchen (1961) A study of cerebrospinal fluid oxygen tension. Arch Neurol 4: 49–58

    Article  Google Scholar 

  33. Hollin SA, Espinosa OE, Sukoff MH, Jacobson JH II (1968) The effect of hyperbaric oxygenation on cerebrospinal fluid oxygen. J Neurosurg 29: 229–235

    Article  PubMed  CAS  Google Scholar 

  34. Gayeski TEJ, Honig CR (1988) Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. Am J Physiol 254: H1179 - H1186

    PubMed  CAS  Google Scholar 

  35. Gayeski TEJ, Honig CR (1991) Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am J Physiol 260: H522 - H531

    PubMed  CAS  Google Scholar 

  36. Wittenberg BA, Wittenberg JB (1989) Transport of oxygen in muscle. Am J Physiol 51: H857 - H878

    Article  Google Scholar 

  37. Gayeski TEJ, Honig CR (1986) Shallow intracellular O2 gradients and absence of per mitochondrial O2 “wells” in heavily working red muscle. Adv Esp Med Biol 200: 487–494

    Article  CAS  Google Scholar 

  38. Moon RE, Camporesi EM (1991) Critical care during hyperbaric oxygen therapy. Prob. Respir Care 4 (2): 139–144

    Google Scholar 

  39. Jamieson D, Van Deb Brenk HAS (1963) Measurements of oxygen tensions in cerebral tissues of rats exposed to high pressures of oxygen. J Appl Physiol 18(5): 869–876

    Google Scholar 

  40. Demcchenko I, Atochin DN (1994) Effects of hyperbaric oxygen on cerebral circulatory insufficiency in rats. Undersea Hyperb Med 23: 31

    Google Scholar 

  41. Alder VA, Yu DY, Cringle SJ (1992) Vitreal oxygen tension measurements in the rat eye. Exp Eye Res 16 (4): 293–299

    Google Scholar 

  42. Hassinen IE (1986) Mitochondrial respiratory control in the myocardium. Bioch Biophys Acta 853: 135–151

    CAS  Google Scholar 

  43. Hofer SOP, Kleij van der AJ, Bos KE (1992) Tissue oxygenation measurement: a directly applied Clark-type electrode in muscle tissue. Adv Esp Med Biol 317: 779–784

    Article  CAS  Google Scholar 

  44. Honig CR, Gayeski (1990) Effect of tachycardia on intracellular PO2 and reserves of O2 transport in subendocardium of mouse left ventricle. Adv Exp Med Biol 277: 395–402

    PubMed  CAS  Google Scholar 

  45. Lehrer RI (1972) Functional aspects of a second mechanism of candidacidal activity by human neutrophils J Clin Invest 51: 2566–2572

    Article  PubMed  CAS  Google Scholar 

  46. Axline SG (1970) Functional biochemistry of the macrophage. Sem Hematol 7: 142–160

    CAS  Google Scholar 

  47. Lingaas E, Midtvedt T (1987) The influence of high and low pressure on phagocytosis of escherichia coli by human neutrophils in vitro. Aviat Space Environ Med 58: 1211–1214

    PubMed  CAS  Google Scholar 

  48. Klebanoff SJ (1975) Antimicrobial mechanism in neutrophilic polymorphonuclear leukocytes. Sem Hematol 12: 117–142

    CAS  Google Scholar 

  49. McRipley RJ, Sbarra AJ (1967) Role of the phagocyte in hostparasite interactions J Bacteriol 94: 1417–1424

    PubMed  CAS  Google Scholar 

  50. Mandell GL (1974) Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect, Immunol 9: 337–341

    CAS  Google Scholar 

  51. Mader JT, Brown GL, Guckian JC, Wells CH, Reinarz JA (1980) A mechanism for the amelioration by hyperbaric oxygen of experimental staphylococcal osteomyelitis in rabbits. J Infec Dis 142: 915–922

    Article  CAS  Google Scholar 

  52. Andrian UH von, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC (1991) Two step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte B2 integrins in vivo. Proc Natl Acad Sci USA 88: 7538–7542

    Article  Google Scholar 

  53. Pardi R, Inverardi L, Bender JR (1992) Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travelers. Immunol Today 13: 224–230

    Article  PubMed  CAS  Google Scholar 

  54. Simpson PJ, Todd RF III, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR (1988) Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody ( Anti-mol, Anti-CDub) that inhibits leukocyte adhesion. J Clin Invest 81: 624–629

    Article  PubMed  CAS  Google Scholar 

  55. Vedder NB, Winn RK, Rice CL, Chi EY, Arfors KE, Harlan JM (1990) Inhibition of leukocyte adherence by anti-CMS monoclonal antibody attenuates reperfusion injury in the rabbit ear. Proc Natl Acad Sci USA 87: 2643–2646

    Article  PubMed  CAS  Google Scholar 

  56. Cosimi AB, Conti D, Delmonico FL, Preffer FI, Wee SL, Rothlein R, Faanes R, Colvin RB (1990) In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol 144: 4604–4612

    PubMed  CAS  Google Scholar 

  57. Lefer DJ, Shandelya SML, Serrano CV, Becker LC, Kuppusamy P, Zweier JL (1993) Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation 88: 1779–1787

    PubMed  CAS  Google Scholar 

  58. Bitterman H, Cohen L (1989) Effects of hyperbaric oxygen in circulatory shock induced by splanchnic artery occlusion and reperfusion in rats. Can J Physiol Pharmacol 67: 1033–1037

    Article  PubMed  CAS  Google Scholar 

  59. Thomas MP, Brown LA, Sponseller DR, Williamson SE, Diaz JA, Guyton DP (1990) Myocardial infarct size reduction by the synergistic effect of hyperbaric oxygen and recombinant tissue plasminogen activator. Am Heart J 120:791–800

    Article  PubMed  CAS  Google Scholar 

  60. Thom SR (1993) Functional inhibition of leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats. Toxicol Appl Pharmacol 123:248–256

    Article  PubMed  CAS  Google Scholar 

  61. Zamboni WA, Roth AC, Russel RC, Graham B, Schy H, Kucan JO (1993) Morphologic analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of hyperbaric oxygen. Plast Reconstr Surg 91: 1110–1123

    Article  PubMed  CAS  Google Scholar 

  62. Ellestad MH, Shandling AH, Hart GB, Messenger JC, Van Nartta B, Whitcraft DD, Rizi RH, Selvester RH, Hayes M, Smith CW (1992) Hyperbaric oxygen and thrombolysis in myocardial infarction. The “Hot MI” study. Circulation 86: 1–47

    Google Scholar 

  63. Thom SR (1993) Leukocytes in carbon monoxide-mediated brain oxidative injury. Toxicol Appl Pharmacol 123:234–247

    Article  PubMed  CAS  Google Scholar 

  64. Thom SR, Mendiguren I, Fisher D (1994) Parenchymal lung injury following smoke inhalation: inhibition by hyperbaric oxygen (HBO). Undersea Biomed Res 78: 55–56

    Google Scholar 

  65. Thom SR, Mendiguren I, Van Winkle T, Fisher D, Fisher AB (1994) Smoke inhalation with a concurrent systemic stress results in lung alveolar injury. Am J Respir Crit Care Med 149: 220–226

    PubMed  CAS  Google Scholar 

  66. Ischiropoulos H, Mendiguren I, Fisher D, Fisher AB, Thom SR (1994) Role of neutrophils and nitric oxide in lung alveolar injury from smoke inhalation. Am J Respir Crit Care Med 150 337–341

    PubMed  CAS  Google Scholar 

  67. Gadd MA, McClellan DS, Neuman TS, Hansbrough JF (1990) Effect of hyperbaric oxygen on murine neutrophil and T-lymphocyte functions. Crit Care Med 18: 974–979

    Article  PubMed  CAS  Google Scholar 

  68. Sharar SR, Winn RK, Murry CE, Harlan JM, Rice CL (1991) A CD18 monoclonal antibody increases the incidence and severity of subcutaneous abscess formation after high-dose Staphylococcus aureus injection in rabbits. Surgery 110: 213–220

    PubMed  CAS  Google Scholar 

  69. Mileski WJ, Sikes P, Atiles L, Lightfoot E, Lipsky P, Baxter C (1993) Inhibition of leukocyte adherence and susceptibility to infection. J Surg Res 54: 349–354

    Article  PubMed  CAS  Google Scholar 

  70. Thom SR, Mendiguren I, Nebolon M, Campbell D, Kilpatrick L (1994) Temporary inhibition of human neutrophil B2 integrin function by hyperbaric oxygen (HBO). Clin Res 42: 130A

    Google Scholar 

  71. Bowles AL, Dauber JH, Daniele RP (1979) The effect of hyperoxia on migration of alveolar macrophages in vitro. Am Rev Respir Dis 120: 541–545

    PubMed  CAS  Google Scholar 

  72. Raffin TA, Simon LM, Braun D, Theodore J, Robin ED (1980) Impairment of phagocytoses by moderate hyperoxia (40 to 60 percent oxygen) in lung macrophages. Lab Invest 42: 622–626

    PubMed  CAS  Google Scholar 

  73. Forman HJ, Williams JJ, Nelson J, Daniele RP, Fisher AB (1982) Hyperoxia inhibits stimulated superoxide release by rat alveolar macrophages. J Appl Physiol 53: 685–689

    PubMed  CAS  Google Scholar 

  74. Nerurkar LS, Zeligs BJ, Bellanti JA (1988) Proliferation of alveolar macrophages in hyperoxia. Ann Allergy (1977) 61: 344–347

    Google Scholar 

  75. Rister M, Baehner RL (1977) Effect of hyperoxia on superoxide anion and hydrogen peroxide production of polymorphonuclear leucocytes and alveolar macrophages. Br J Haematol 36: 241–248

    Article  PubMed  CAS  Google Scholar 

  76. Murphy SA, Hyams JS, Fisher AB, Root RK (1975) Effects of oxygen exposure on in vitro function of pulmonary alveolar macrophages. J Clin Invest 56: 503–511

    Article  Google Scholar 

  77. Andersen V, Hellung-Larsen P, Sorensen SF (1968) Optimal oxygen tension for human lymphocytes in culture. J Cell Physiol 72: 149–152

    Article  PubMed  CAS  Google Scholar 

  78. Mizrahi A, Vosseller GV, Yagi Y, Moore GE (1972) The effect of dissolved oxygen partial pressure on growth, metabolism and immunoglobulin production in a permanent human lymphocyte cell line culture. Proc Soc Exp Biol Med 139: 118–122

    PubMed  CAS  Google Scholar 

  79. Hansbrough JF, Piacentine JG, Eiseman B (1980) Immunosuppression by hyperbaric oxygen. Surgery 87: 662–667

    PubMed  CAS  Google Scholar 

  80. Feldmeier JJ, Boswell RN, Brown M, Shaffer P (1984) The effects of hyperbaric oxygen on the immunologic status of healthy human subjects. Proceedings of the Eighth International Congress on Hyperbaric Medicine, pp 41–46

    Google Scholar 

  81. Lotovin AP, Morozov VG, Khavinson VK, Dolgly OD (1981) On the problem of cellular and humoral immunity under conditions of hyperoxia. In: 7th International Congress on Hyperbaric Medicine, Moscow

    Google Scholar 

  82. Bitterman N, Bitterman H, Kinarty A, Melamed Y, Lahat N (1993) Effect of a single exposure to hyperbaric oxygen on blood mononuclear cells in human subjects. Undersea Hyperb Med 20: 197–204

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Camporesi, E.M., Mascia, M.F., Thom, S.R. (1996). Physiological Principles of Hyperbaric Oxygenation. In: Oriani, G., Marroni, A., Wattel, F. (eds) Handbook on Hyperbaric Medicine. Springer, Milano. https://doi.org/10.1007/978-88-470-2198-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2198-3_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2200-3

  • Online ISBN: 978-88-470-2198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics