Skip to main content

Cellular and Molecular Mechanisms of Chronic Inflammation-Associated Organ Fibrosis

  • Chapter
  • First Online:
Chronic Inflammation

Abstract

Fibrotic or scar tissue represents a condition where normal tissue architecture has become distorted and been replaced by extracellular matrix (ECM). ECM deposition in injured tissues is a natural part of the wound healing process that facilitates efficient restoration of tissue integrity. However, if the injury persists, the excessive accumulation of ECM leads to the loss of organ function and eventual organ failure. Persistent injuries arise due to various causes, depending on the organ. Some fibrotic diseases are associated with the chronic inflammation that accompanies infection or autoimmune conditions. Other fibrotic diseases are triggered by chemical or pathophysiological insults to epithelial cells, or by unknown causes, as is the case for idiopathic pulmonary fibrosis (IPF). Although the etiology of fibrosis varies between specific diseases, the fibrotic process that takes place in each organ shares a number of common characteristics. In particular, it is widely accepted that excessive amounts of ECM components are produced by activated fibroblasts that accumulate in injured tissue. In the first half of this chapter, we discuss the controversial origin of activated fibroblasts as well as the mechanisms of their activation. In the second half of this chapter, we describe the cellular and molecular mediators that regulate fibrotic responses in the specific example of pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE, Olver SD, Lor M, Raffelt NC, Koyama M, Leveque L, Le Texier L, Melino M, Markey KA, Varelias A, Engwerda C, Serody JS, Janela B, Ginhoux F, Clouston AD, Blazar BR, Hill GR, MacDonald KP (2014) CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J Clin Invest 124:4266–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arras M, Louahed J, Simoen V, Barbarin V, Misson P, van den Brule S, Delos M, Knoops L, Renauld JC, Lison D, Huaux F (2006) B lymphocytes are critical for lung fibrosis control and prostaglandin E2 regulation in IL-9 transgenic mice. Am J Respir Cell Mol Biol 34:573–580

    Article  CAS  PubMed  Google Scholar 

  • Beamer CA, Migliaccio CT, Jessop F, Trapkus M, Yuan D, Holian A (2010) Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol 88:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonner JC, Osornio-Vargas AR, Badgett A, Brody AR (1991) Differential proliferation of rat lung fibroblasts induced by the platelet-derived growth factor-AA, -AB, and -BB isoforms secreted by rat alveolar macrophages. Am J Respir Cell Mol Biol 5:539–547

    Article  CAS  PubMed  Google Scholar 

  • Boveda-Ruiz D, D’Alessandro-Gabazza CN, Toda M, Takagi T, Naito M, Matsushima Y, Matsumoto T, Kobayashi T, Gil-Bernabe P, Chelakkot-Govindalayathil AL, Miyake Y, Yasukawa A, Morser J, Taguchi O, Gabazza EC (2013) Differential role of regulatory T cells in early and late stages of pulmonary fibrosis. Immunobiology 218:245–254

    Article  CAS  PubMed  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavarra E, Carraro F, Fineschi S, Naldini A, Bartalesi B, Pucci A, Lungarella G (2004) Early response to bleomycin is characterized by different cytokine and cytokine receptor profiles in lungs. Am J Physiol Lung Cell Mol Physiol 287:L1186–L1192

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty SD, Zhu G, Tsai MC, Mohan VP, Marino S, Kirschner DE, Huang L, Flynn J, Chan J (2008) Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 76:916–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA (1999) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 104:777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JG, Kuhn C 3rd (1982) Bleomycin-induced pulmonary fibrosis in hamsters: effect of neutrophil depletion on lung collagen synthesis. Am Rev Respir Dis 126:737–739

    CAS  PubMed  Google Scholar 

  • Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol 8:241–276

    Article  CAS  PubMed  Google Scholar 

  • Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18:1262–1270

    Google Scholar 

  • Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20:857–869

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Ferrans VJ, Schoenberger CI, Rennard SI, Crystal RG (1985) Patterns of pulmonary structural remodelling after experimental paraquat toxicity. The morphogenesis of intraalveolar fibrosis. Am J Pathol 118:452–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gavett SH, Carakostas MC, Belcher LA, Warheit DB (1992) Effect of circulating neutrophil depletion on lung injury induced by inhaled silica particles. J Leukoc Biol 51:455–461

    CAS  PubMed  Google Scholar 

  • Gharaee-Kermani M, McCullumsmith RE, Charo IF, Kunkel SL, Phan SH (2003) CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine 24:266–276

    Article  CAS  PubMed  Google Scholar 

  • Gibbons MA, MacKinnon AC, Ramachandran P, Dhaliwal K, Duffin R, Phythian-Adams AT, van Rooijen N, Haslett C, Howie SE, Simpson AJ, Hirani N, Gauldie J, Iredale JP, Sethi T, Forbes SJ (2011) Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med 184:569–581

    Article  CAS  PubMed  Google Scholar 

  • Giri SN, Hyde DM, Marafino BJ Jr (1986) Ameliorating effect of murine interferon gamma on bleomycin-induced lung collagen fibrosis in mice. Biochem Med Metab Biol 36:194–197

    Article  CAS  PubMed  Google Scholar 

  • Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242

    Article  PubMed  Google Scholar 

  • Hao HQ, Cohen DA, Jennings CD, Bryson JS, Kaplan AM (2000) Bleomycin-induced pulmonary fibrosis is independent of eosinophils. J Leukoc Biol 68:515–521

    CAS  PubMed  Google Scholar 

  • Hasan SA, Eksteen B, Reid D, Paine HV, Alansary A, Johannson K, Gwozd C, Goring KA, Vo T, Proud D, Kelly MM (2013) Role of IL-17A and neutrophils in fibrosis in experimental hypersensitivity pneumonitis. J Allergy Clin Immunol 131:1663–1673

    Article  CAS  PubMed  Google Scholar 

  • Helene M, Lake-Bullock V, Zhu J, Hao H, Cohen DA, Kaplan AM (1999) T cell independence of bleomycin-induced pulmonary fibrosis. J Leukoc Biol 65:187–195

    CAS  PubMed  Google Scholar 

  • Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG, Griggs DW, Prinsen MJ, Maher JJ, Iredale JP, Lacy-Hulbert A, Adams RH, Sheppard D (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19:1617–1624

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama R, Moro T, Nakao S, Mikami K, Fukumitsu H, Ueda Y, Ikeda K, Adachi E, Bou–Gharios G, Okazaki I, Inagaki Y (2009) Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology 137:1459–1466.e1451

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodelling. Am J Pathol 180:1340–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huaux F, Liu T, McGarry B, Ullenbruch M, Xing Z, Phan SH (2003) Eosinophils and T lymphocytes possess distinct roles in bleomycin-induced lung injury and fibrosis. J Immunol 171:5470–5481

    Article  CAS  PubMed  Google Scholar 

  • Hubbard AK (1989) Role for T lymphocytes in silica-induced pulmonary inflammation. Lab Invest 61:46–52

    CAS  PubMed  Google Scholar 

  • Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, Gerard C (2004) A critical role for eosinophils in allergic airways remodelling. Science 305:1776–1779

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Lin S-L, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung C, Linn G, Chow YH, Kobayashi A, Mittelsteadt K, Altemeier WA, Gharib SA, Schnapp LM, Duffield JS (2013) Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 188:820–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussell T, Bell TJ (2014) Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14:81–93

    Article  CAS  PubMed  Google Scholar 

  • Inagaki Y, Truter S, Tanaka S, Di Liberto M, Ramirez F (1995) Overlapping pathways mediate the opposing actions of tumor necrosis factor-alpha and transforming growth factor-beta on alpha 2(I) collagen gene transcription. J Biol Chem 270:3353–3358

    Article  CAS  PubMed  Google Scholar 

  • Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ, Liu X, Xu J, Wang P, Paik YH, Meng F, Asagiri M, Murray LA, Hofmann AF, Iida T, Glass CK, Brenner DA, Kisseleva T (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 111:E3297–E3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang T, Yi J, Guo A, Wang X, Overall CM, Jiang W, Elde R, Borregaard N, Pei D (2001) Subcellular distribution and cytokine- and chemokine-regulated secretion of leukolysin/MT6-MMP/MMP-25 in neutrophils. J Biol Chem 276:21960–21968

    Article  CAS  PubMed  Google Scholar 

  • King TE Jr (2005) Clinical advances in the diagnosis and therapy of the interstitial lung diseases. Am J Respir Crit Care Med 172:268–279

    Article  PubMed  Google Scholar 

  • Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF, Brenner DA (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45:429–438

    Article  CAS  PubMed  Google Scholar 

  • Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W (2003) Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med 198:1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleaveland KR, Velikoff M, Yang J, Agarwal M, Rippe RA, Moore BB, Kim KK (2014) Fibrocytes are not an essential source of type I collagen during lung fibrosis. J Immunol 193:5229–5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  PubMed  Google Scholar 

  • Komura K, Yanaba K, Horikawa M, Ogawa F, Fujimoto M, Tedder TF, Sato S (2008) CD19 regulates the development of bleomycin-induced pulmonary fibrosis in a mouse model. Arthritis Rheum 58:3574–3584

    Article  CAS  PubMed  Google Scholar 

  • Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66

    Article  CAS  PubMed  Google Scholar 

  • Kriz W, Kaissling B, Le Hir M (2011) Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Investig 121:468–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Jung Y, Tighe RM, Xie T, Liu N, Leonard M, Gunn MD, Jiang D, Noble PW (2012) A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol Lung Cell Mol Physiol 302:L933–L940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Re S, Lison D, Huaux F (2013) CD4+ T lymphocytes in lung fibrosis: diverse subsets, diverse functions. J Leukoc Biol 93:499–510

    Article  CAS  PubMed  Google Scholar 

  • MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, Kuns R, Pettit AR, Clouston A, Wainwright B, Branstetter D, Smith J, Paxton RJ, Cerretti DP, Bonham L, Hill GR, Hume DA (2010) An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116:3955–3963

    Article  CAS  PubMed  Google Scholar 

  • Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercer PF, Johns RH, Scotton CJ, Krupiczojc MA, Konigshoff M, Howell DC, McAnulty RJ, Das A, Thorley AJ, Tetley TD, Eickelberg O, Chambers RC (2009) Pulmonary epithelium is a prominent source of proteinase-activated receptor-1-inducible CCL2 in pulmonary fibrosis. Am J Respir Crit Care Med 179:414–425

    Article  PubMed  Google Scholar 

  • Minshall EM, Leung DY, Martin RJ, Song YL, Cameron L, Ernst P, Hamid Q (1997) Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 17:326–333

    Article  CAS  PubMed  Google Scholar 

  • Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, Renia L, Pol S, Mallet V, Gilgenkrantz H (2009) Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol 174:1766–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore BB, Paine R 3rd, Christensen PJ, Moore TA, Sitterding S, Ngan R, Wilke CA, Kuziel WA, Toews GB (2001) Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol 167:4368–4377

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble PW (2005) Back to the future: historical perspective on the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 33:113–120

    Article  CAS  PubMed  Google Scholar 

  • Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD (2001) Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 98:7958–7963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A, Ortega N, Girard JP (2012) Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol 188:3488–3495

    Article  CAS  PubMed  Google Scholar 

  • Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, Comm AEJA (2011) An official ATS/ERSARS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  Google Scholar 

  • Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, Hartland SN, Snowdon VK, Cappon A, Gordon-Walker TT, Williams MJ, Dunbar DR, Manning JR, van Rooijen N, Fallowfield JA, Forbes SJ, Iredale JP (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109:E3186–E3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redente EF, Keith RC, Janssen W, Henson PM, Ortiz LA, Downey GP, Bratton DL, Riches DW (2014) Tumor necrosis factor-alpha accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol 50:825–837

    Article  PubMed  PubMed Central  Google Scholar 

  • Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BLM (2011) PNAS Plus: multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci 108:E1475–E1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe RG, Lin Y, Shimizu-Hirota R, Hanada S, Neilson EG, Greenson JK, Weiss SJ (2011) Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 31:2392–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shichino S, Abe J, Ueha S, Otsuji M, Tsukui T, Kosugi MK, Shand FHW, Hashimoto S, Suzuki HI, Morikawa T, Inagaki Y, Matsushima K (2015) Reduced supply of monocyte-derived macrophages leads to a transition from nodular to diffuse lesions and tissue cell activation in silica-induced pulmonary fibrosis in mice. Am J Pathol 185(11):2923–2938

    Article  CAS  PubMed  Google Scholar 

  • Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, Krishnan V, Lai-Hsu C, Park KK, Tsoulfas P, Lee JK (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33:13882–13887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz-Osterreicher M, Brenner DA (2010) Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51:1027–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Tighe RM, Liang J, Liu N, Jung Y, Jiang D, Gunn MD, Noble PW (2011) Recruited exudative macrophages selectively produce CXCL10 after noninfectious lung injury. Am J Respir Cell Mol Biol 45:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  PubMed  Google Scholar 

  • Tsukui T, Ueha S, Abe J, Hashimoto S, Shichino S, Shimaoka T, Shand FH, Arakawa Y, Oshima K, Hattori M, Inagaki Y, Tomura M, Matsushima K (2013) Qualitative rather than quantitative changes are hallmarks of fibroblasts in bleomycin-induced pulmonary fibrosis. Am J Pathol 183:758–773

    Article  CAS  PubMed  Google Scholar 

  • Tsukui T, Ueha S, Shichino S, Inagaki Y, Matsushima K (2015) Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis. Am J Pathol 185(11):2939–2948

    Article  CAS  PubMed  Google Scholar 

  • Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, Wynn TA (2010) Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med 207:535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208:1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouji Matsushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tsukui, T., Shichino, S., Shimaoka, T., Ueha, S., Matsushima, K. (2016). Cellular and Molecular Mechanisms of Chronic Inflammation-Associated Organ Fibrosis. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_2

Download citation

Publish with us

Policies and ethics