Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 100))

Abstract

Testing for drugs of abuse has become commonplace and is used for a variety of indications. Commonly employed testing methods include immunoassay and chromatography. Testing methods vary in their sensitivity, specificity, time, and cost. While urine remains the most common body fluid used for testing of drugs of abuse, over the last several decades the use of alternative matrices such as blood, sweat, oral fluids, and hair has increased dramatically. Each biological matrix offers advantages and disadvantages for drug testing, and the most appropriate matrix frequently depends on the indications for the drug test. Drugs of abuse that are most commonly tested include alcohol, amphetamines, cannabinoids, cocaine, opiates, and phencyclidine. Testing may involve detection of the parent compound or metabolites and sensitivity, specificity, and reliability of drug testing may vary depending on the drug being tested. Toxicologists have a responsibility to understand the strengths and limitations of testing techniques and matrices to be able to critically evaluate the results of a drug test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mulé, SJ, Jukofsky D, Kogan M, De Pace A, Verebey K (1977) Evaluation of the radioimmunoassay for benzoylecgonine (a cocaine metabolite) in human urine. Clin Chem 23: 796–801

    PubMed  Google Scholar 

  2. Dolan K, Rouen D, Kimber J (2004) An overview of the use of urine, hair, sweat and saliva to detect drug use. Drug Alcohol Rev 23: 213–217

    Article  PubMed  Google Scholar 

  3. Smith-Kielland A, Skuterud B, M-rland J (1999) Urinary excretion of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol and cannabinoids in frequent and infrequent drug users. J Anal Toxicol 23: 323–332

    CAS  PubMed  Google Scholar 

  4. Kraemer T, Paul LD (2007) Bioanalytical procedures for determination of drugs of abuse in blood. Anal Bioanal Chem 388: 1415–1435

    Article  CAS  PubMed  Google Scholar 

  5. Moeller MR, Kraemer T (2002) Drugs of abuse monitoring in blood for control of driving under the influence of drugs. Ther Drug Monit 24: 210–221

    Article  CAS  PubMed  Google Scholar 

  6. Kroener L, Musshoff F, Madea B (2003) Evaluation of immunochemical drug screenings of whole blood samples. A retrospective optimization of cut off levels after confirmation-analysis on GC-MS and HPLC-DAD. J Anal Toxicol 27: 205–212

    CAS  PubMed  Google Scholar 

  7. Spiehler V, Isenschmid DS, Matthews P, Kemp P, Kupiec T (2003) Performance of a microtiter plate ELISA for screening of postmortem blood for cocaine and metabolites. J Anal Toxicol 27: 587–591

    CAS  PubMed  Google Scholar 

  8. Bernhoft IM, Steentoft A, Johansen SS, Klitgaard NA, Larsen LB, Hansen LB (2005) Drugs in injured drivers in Denmark. Forensic Sci Int 150: 181–189

    Article  CAS  PubMed  Google Scholar 

  9. Drummer OH (2005) Pharmacokinetics of illicit drugs in oral fluid. Forensic Sci Int 150: 133–142

    Article  CAS  PubMed  Google Scholar 

  10. Drummer OH (2008) Introduction and review of collection techniques and applications of drug testing of oral fluid. Ther Drug Monit 30: 203–206

    CAS  PubMed  Google Scholar 

  11. O’Neal CL, Crouch DJ, Rollins DE, Fatah AA (2000) The effects of collection methods on oral fluid codeine concentrations. J Anal Toxicol 24: 536–542

    PubMed  Google Scholar 

  12. Crouch DJ, Walsh JM, Flegel R, Cangianelli L, Baudys J, Atkins R (2005) An evaluation of selected oral fluid point-of-collection drug-testing devices. J Anal Toxicol 29: 244–248

    PubMed  Google Scholar 

  13. Walsh JM, Flegel R, Crouch DJ, Cangianelli L, Baudys J (2003) An evaluation of rapid point-of-collection oral fluid drug-testing devices. J Anal Toxicol 27: 429–439

    CAS  PubMed  Google Scholar 

  14. Aps JK, Martens LC (2005) The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int 150: 119–131

    Article  CAS  PubMed  Google Scholar 

  15. Teixeira H, Proenca P, Verstraete A, Corte-Real F, Vieira DN (2005) Analysis of Δ9-tetrahydrocannabinol in oral fluid samples using solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. Forensic Sci Int 150: 205–211

    Article  CAS  PubMed  Google Scholar 

  16. Crouch DJ (2005) Oral fluid collection: The neglected variable in oral fluid testing. Forensic Sci Int 150: 165–173

    Article  CAS  PubMed  Google Scholar 

  17. Cook CE, Jeffcoat AR, Hill JM, Pugh DE, Patetta PK, Sadler BM, White WR, Perez-Reyes M (1993) Pharmacokinetics of methamphetamine self-administered to human subjects by smoking S-(+)-methamphetamine hydrochloride. Drug Metab Dispos 21: 717–723

    CAS  PubMed  Google Scholar 

  18. Huestis MA, Oyler JM, Cone EJ, Wstadik AT, Schoendorfer D, Joseph RE Jr (1999) Sweat testing for cocaine, codeine and metabolites by gas chromatography—mass spectrometry. J Chromatogr B Biomed Sci Appl 733: 247–264

    Article  CAS  PubMed  Google Scholar 

  19. Liberty HJ, Johson BD, Fortner N, Randolph D (2003) Detecting crack and other cocaine use with fastpatches. Addict Biol 8: 191–200

    Article  CAS  PubMed  Google Scholar 

  20. Kidwell DA, Holland JC, Athanaselis S (1998) Testing for drugs of abuse in saliva and sweat. J Chromatogr B Biomed Sci Appl 713: 111–135

    Article  CAS  PubMed  Google Scholar 

  21. Kintz P (1996) Drug testing in addicts: A comparison between urine, sweat, and hair. Ther Drug Monit 18: 450–455

    Article  CAS  PubMed  Google Scholar 

  22. Cone EJ, Hillsgrove MJ, Jenkins AJ, Keenan RM, Darwin WD (1994) Sweat testing for heroin, cocaine, and metabolites. J Analyt Toxicol 18: 298–305

    CAS  Google Scholar 

  23. Kintz P, Tracqui A, Mangin P, Edel Y (1996) Sweat testing in opioid users with a sweat patch. J Analyt Toxicol 20: 393–397

    CAS  Google Scholar 

  24. Kintz P, Tracqui A, Marzullo C, Darreye A, Tremeau F, Greth P, Ludes B (1998) Enantioselective analysis of methadone in sweat as monitored by liquid chromatography/ion spray-mass spectrometry. Ther Drug Monit 20: 35–40

    Article  CAS  PubMed  Google Scholar 

  25. United States of America v. Jamie M. Snyder (2002) 5: 99-CR-528 (HGM/GJD), US District Court Northern District of New York [http://www.drugpolicy.org/docUploads/usv_snyder.pdf]

    Google Scholar 

  26. Kidwell DA, Smith FP (2001) Susceptibility of PharmChek drugs of abuse patch to environmental contamination. Forensic Sci Int 116: 89–106

    Article  CAS  PubMed  Google Scholar 

  27. Levisky JA, Bowerman DL, Jenkins WW, Karch SB (2000) Drug deposition in adipose tissue and skin: Evidence for an alternative source of positive sweat patch tests. Forensic Sci Int 110: 35–46

    Article  CAS  PubMed  Google Scholar 

  28. Balabanova S, Schneider E, Wepler R, Hermann B, Boschek HJ, Scheitler H (1992) [Significance of drug determination in pilocarpine sweat for detection of past drug abuse]. Beitr Gerichtl Med 50: 111–115

    CAS  PubMed  Google Scholar 

  29. Curtis J, Greenberg M (2008) Screening for drugs of abuse: Hair as an alternative matrix: A review for the medical toxicologist. Clin Toxicol (Phila) 46: 22–34

    CAS  Google Scholar 

  30. Society of Hair Testing (2004) Recommendations for hair testing in forensic cases. Forensic Sci Int 145: 83–84

    Article  Google Scholar 

  31. Baumgartner WA, Hill VA (1993) Sample preparation techniques. Forensic Sci Int 63: 121–143

    Article  CAS  PubMed  Google Scholar 

  32. Polettini A, Stramesi C, Vignali C, Montagna M (1997) Determination of opiates in hair. Effects of extraction methods on recovery and on stability of analytes. Forensic Sci Int 84: 259–269

    Article  CAS  PubMed  Google Scholar 

  33. Romano G, Barbera N, Spadaro G, Valenti V (2003) Determination of drugs of abuse in hair: Evaluation of external heroin contamination and risk of false positives. Forensic Sci Int 131: 98–102

    Article  CAS  PubMed  Google Scholar 

  34. Blank DL, Kidwell DA (1993) External contamination of hair by cocaine: An issue in forensic interpretation. Forensic Sci Int 63: 145–160

    Article  CAS  PubMed  Google Scholar 

  35. Rollins DE, Wilkins DG, Krueger GG (2003) The effect of hair color on the incorporation of codeine into human hair. J Anal Toxicol 27: 545–551

    CAS  PubMed  Google Scholar 

  36. Reid RW, O’Connor FL, Deakin AG, Ivery DM, Crayton JW (1996) Cocaine and metabolites in human graying hair: Pigmentary relationship. J Toxicol Clin Toxicol 34: 685–690

    Article  CAS  PubMed  Google Scholar 

  37. Kidwell DA, Lee EH, DeLauder SF (2000) Evidence for bias in hair testing and procedures to correct bias. Forensic Sci Int 107: 39–61

    Article  CAS  PubMed  Google Scholar 

  38. Caetano R, Cunradi C (2002) Alcohol dependence: A public health perspective. Addiction 97: 633–645

    Article  PubMed  Google Scholar 

  39. Narahashi T, Kuriyama K, Illes P, Wirkner K, Fischer W, Mühlberg K, Scheibler P, Allgaier C, Minami K, Lovinger D, Lallemand F, Ward RJ, DeWitte P, Itatsu T, Takei Y, Oide H, Hirose M, Wang XE, Watanabe S, Tateyama M, Ochi R, Sato N (2001) Neuroreceptors and ion channels as targets of alcohol. Alcohol Clin Exp Res 25 (5 Suppl ISBRA): 182S–188S

    CAS  PubMed  Google Scholar 

  40. Norberg A, Jones AW, Hahn RG, Garielsson JL (2003) Role of variability in explaining ethanol pharmacokinetics: Research and forensic applications. Clin Pharmacokinet 42: 1–31

    Article  CAS  PubMed  Google Scholar 

  41. Edenberg HJ (2007) The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30: 5–13

    PubMed  Google Scholar 

  42. Norberg A, Jones AW, Hahn RG (2003) Role of variability in explaining ethanol pharmacokinetics: Research and forensic applications. Clin Pharmacokinet 42: 1–31

    Article  CAS  PubMed  Google Scholar 

  43. Zuba D (2008) Accuracy and reliability of breath alcohol testing by handheld electrochemical analysers. Forensic Sci Int 178: e29–33

    Article  CAS  PubMed  Google Scholar 

  44. Trafford DJ, Makin HL (1994) Breath-alcohol concentration may not always reflect the concentration of alcohol in blood. J Anal Toxicol 18: 225–228

    CAS  PubMed  Google Scholar 

  45. Rainey PM (1993) Relation between serum and whole-blood ethanol concentrations. Clin Chem 39: 2288–2292

    CAS  PubMed  Google Scholar 

  46. Smolle KH, Hofmann G, Kaufmann P (1999) Q.E.D. Alcohol test: A simple and quick method to detect ethanol in saliva of patients in emergency departments. Comparison with the conventional determination in blood. Intensive Care Med 25: 492–495

    Article  CAS  PubMed  Google Scholar 

  47. Soderberg BL, Salem RO, Best CA (2003) Fatty acid ethyl esters. Ethanol metabolites that reflect ethanol intake. Am J Clin Pathol 119: S94–99

    Google Scholar 

  48. Kraman P (2004) Drug Abuse in America-Rural Meth. Trends Alert. The Council of State Governments, Lexington, KY, March 2004

    Google Scholar 

  49. Weir E (2000) Raves: A review of the culture, the drugs, and the prevention of harm. Can Med Assoc J 162: 1829–1830

    Google Scholar 

  50. Chiang WK (2006) Amphetamines. In: LR Goldfrank, NE Flomenbaum, NA Lewin, MA Howland, RS Hoffman, LS Nelson (eds): Goldfrank’s Toxicologic Emergencies, 8th edn., McGraw-Hill, New York, 1118–1132

    Google Scholar 

  51. Cody JT (2002) Precursor medications as a source of methamphetamine and/or amphetamine positive drug testing results. J Occup Environ Med 44: 435–450

    Article  CAS  PubMed  Google Scholar 

  52. Stout PR, Klette KL, Horn CK (2004) Evaluation of ephedrine, pseudoephedrine and phenyl-propanolamine concentrations in human urine samples and a comparison of the specificity of DRI amphetamines and Abuscreen online (KIMS) amphetamines screening immunoassays. J Forensic Sci 49: 160–164

    Article  CAS  PubMed  Google Scholar 

  53. Stout PR, Klette KL, Wiegand R (2003) Comparison and evaluation of DRI methamphetamine, DRI ecstasy, Abuscreen ONLINE amphetamine, and a modified Abuscreen ONLINE amphetamine screening immunoassays for the detection of amphetamine (AMP), methamphetamine (MTH), 3,4-methylenedioxyamphetamine (MDA), and 3,4-methylenedioxymethamphetamine (MDMA) in human urine. J Anal Toxicol 27: 265–269

    CAS  PubMed  Google Scholar 

  54. Paul BD, Jemionek J, Lesser D, Jacobs A, Searles DA (2004) Enantiomeric separation and quantitation of (±)-amphetamine, (±)-methamphetamine, (±)-MDA, (±)-MDMA, and (±)-MDEA in urine specimens by GC-EI-MS after derivatization with (R)-(−)-or (S)-(+)-α-methoxy-α-(trifluoromethy) phenylacetyl chloride (MTPA). J Anal Toxicol 28: 449–455

    CAS  PubMed  Google Scholar 

  55. Krasowski MD, Pizon AF, Siam MG, Giannoutsos S, Iyer M, Ekins S (2009) Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg Med 9: 5

    Article  PubMed  Google Scholar 

  56. Smink BE, Hofman BJ, Dijkhuizen A, Lusthof KJ, de Gier JJ, Egberts AC, Uges DR (2008) The concentration of oxazepam and oxazepam glucuronide in oral fluid, blood and serum after controlled administration of 15 and 30 mg oxazepam. Br J Clin Pharmacol 66: 556–560

    Article  CAS  PubMed  Google Scholar 

  57. Kintz P, Tracqui A, Mangin P (1996) Sweat testing for benzodiazepines. J Forensic Sci 41: 851–854

    CAS  PubMed  Google Scholar 

  58. Kintz P, Villain M, Cirimele V, Pépin G, Ludes B (2004) Windows of detection of lorazepam in urine, oral fluid and hair, with a special focus on drug-facilitated crimes. Forensic Sci Int 145: 131–135

    Article  CAS  PubMed  Google Scholar 

  59. Verstraete AG (2004) Detection times of drugs of abuse in blood, urine, and oral fluid. Ther Drug Monit 26: 200–205

    Article  CAS  PubMed  Google Scholar 

  60. Chéze M, Duffort G, Deveaux M, Pépin G (2005) Hair analysis by liquid chromatography-tandem mass spectrometry in toxicological investigation of drug-facilitated crimes: Report of 128 cases over the period June 2003-May 2004 in metropolitan Paris. Forensic Sci Int 153: 3–10

    Article  PubMed  Google Scholar 

  61. World Drug Report (2008) United Nations Office on Drugs and Crime (online available at: http://www.unodc.org/documents/wdr/WDR_2008/WDR_2008_eng_web.pdf; accessed March 28, 2009)

    Google Scholar 

  62. Chen CY, O’Brien MS, Anthony JC (2005) Who becomes cannabis dependent soon after onset of use? Epidemiological evidence from the United States: 2000–2001. Drug Alcohol Depend 79: 11–22

    Article  PubMed  Google Scholar 

  63. Elkashef A, Vocci F, Huestis M, Haney M, Budney A, Gruber A, el-Guebaly N (2008) Marijuana neurobiology and treatment. Subst Abus 29: 17–29

    Article  PubMed  Google Scholar 

  64. Ohlsson A, Lindgren JE, Wahlen A, Agurell S, Hollister LE, Gillespie HK (1980) Plasma Δ9-tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther 28: 409–416

    CAS  PubMed  Google Scholar 

  65. Musshoff F, Madea B (2006) Review of biologic matrices (urine, blood, hair) as indicators of recent or ongoing cannabis use. Ther Drug Monit 28: 155–163

    Article  CAS  PubMed  Google Scholar 

  66. Teixeira H, Verstraete A, Proenca P, Corte-Real F, Monsanto P, Vieira DN (2007) Validated method for the simultaneous determination of Δ9-THC and Δ9-THC-COOH in oral fluid, urine and whole blood using solid-phase extraction and liquid chromatography-mass spectrometry with electrospray ionization. Forensic Sci Int 170: 148–155

    Article  CAS  PubMed  Google Scholar 

  67. Maralikova B, Weinmann W (2004) Simultaneous determination of Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannibol in human plasma by high-performance liquid chromatography/tandem mass spectrometry. J Mass Spectrom 39: 526–531

    Article  CAS  PubMed  Google Scholar 

  68. Huestis MA, Cone EJ (2004) Relationship of Δ9-tetrahydrocannabinol concentrations in oral fluid and plasma after controlled administration of smoked cannabis. J Anal Toxicol 28: 394–399

    CAS  PubMed  Google Scholar 

  69. Cone EJ, Huestis MA (1993) Relating blood concentrations of tetrahydrocannabinol and metabolites to pharmacologic effects and time of marijuana usage. Ther Drug Monit 15: 527–532

    Article  CAS  PubMed  Google Scholar 

  70. Huestis MA, Henningfield JE, Cone EJ (1992) Blood cannabinoids. II. Models for the prediction of time of marijuana exposure from plasma concentrations of Δ9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH). J Anal Toxicol 16: 283–290

    CAS  PubMed  Google Scholar 

  71. Giroud C, Ménétrey A, Augsburger M, Buclin T, Sanchez-Mazas P, Mangin P (2001) Δ9-THC, 11-OH-Δ9-THC and Δ9-THCCOOH plasma or serum to whole blood concentrations distribution ratios in blood samples taken from living and dead people. Forensic Sci Int 123: 159–164

    Article  CAS  PubMed  Google Scholar 

  72. Skopp G, Pötsch L, Mauden M, Richter B (2002) Partition coefficient, blood to plasma ratio, protein binding and short-term stability of 11-nor-Δ9-carboxy tetrahydrocannabinol glucuronide. Forensic Sci Int 126: 17–23

    Article  CAS  PubMed  Google Scholar 

  73. Huestis MA, Henningfield JE, Cone EJ (1992) Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J Anal Toxicol 16: 276–282

    CAS  PubMed  Google Scholar 

  74. Kielland KB (1992) [Urinary excretion of cannabis metabolites]. Tidsskr Nor Laegeforen 112: 1585–1586

    CAS  PubMed  Google Scholar 

  75. Lafolie P, Beck O, Blennow G, Boréus L, Borg S, Elwin CE, Karlsson L, Odelius G, Hjemdahl P (1991) Importance of creatinine analyses of urine when screening for abused drugs. Clin Chem 37: 1927–1931

    CAS  PubMed  Google Scholar 

  76. Fraser AD, Worth D (1999) Urinary excretion profiles of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol: a Δ9-THCCOOH to creatinine ratio study. J Anal Toxicol 23: 531–534

    CAS  PubMed  Google Scholar 

  77. Manno JE, Manno BR, Kemp PM, Alford DD, Abukhalaf IK, McWilliams, ME, Hagaman FN, Fitzgerald MJ (2001) Temporal indication of marijuana use can be estimated from plasma and urine concentrations of Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol, and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid. J Anal Toxicol 25: 538–549

    CAS  PubMed  Google Scholar 

  78. Golding Fraga S, Diaz-Flores Estevez J, Diaz Romero C (1998) Stability of cannabinoids in urine in three storage temperatures. Ann Clin Lab Sci 28: 160–162

    CAS  PubMed  Google Scholar 

  79. Nakahara Y, Takahashi K, Kikura R (1995) Hair analysis for drugs of abuse. X. Effect of physicochemical properties of drugs on the incorporation rates into hair. Biol Pharm Bull 18: 1223–1227

    CAS  PubMed  Google Scholar 

  80. Musshoff F, Driever F, Lachenmeier K, Lachenmeier DW, Banger W, Madea B (2006) Results of hair analyses for drugs of abuse and comparison with self-reports and urine tests. Forensic Sci Int 156: 118–123

    Article  CAS  PubMed  Google Scholar 

  81. Uhl M (2000) Tandem mass spectrometry: A helpful tool in hair analysis for the forensic expert. Forensic Sci Int 107: 169–179

    Article  CAS  PubMed  Google Scholar 

  82. Samyn N, De Boeck G, Verstraete AG (2002) The use of oral fluid and sweat wipes for the detection of drugs of abuse in drivers. J Forensic Sci 47: 1380–1387

    CAS  PubMed  Google Scholar 

  83. Crouch DJ, Walsh JM, Cangianelli L, Quintela (2008) Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices. Ther Drug Monit 30: 188–195

    Article  CAS  PubMed  Google Scholar 

  84. World situation with regard to drug abuse— Report by the secretariat. United Nations Economic and Social Council Commission on Narcotic Drugs (online available at: http://daccess-ods.un.org/TMP/648688.html; accessed May 19, 2009)

    Google Scholar 

  85. The NSDUH Report — Cocaine Use: 2002 and 2003: Substance Abuse and Mental Health Services Administration (SAMHSA) (online available, at: http://www.oas.samhsa.gov/2k5/cocaine/cocaine.pdf; accessed May 19, 2009)

    Google Scholar 

  86. Jacob P 3rd, Jones RT, Benowitz NL, Shulgin AT, Lewis ER, Elias-Baker BA (1990) Cocaine smokers excrete a pyrolysis product, anhydroecgonine methyl ester. J Toxicol Clin Toxicol 28: 121–125

    Article  PubMed  Google Scholar 

  87. Toennes SW, Fandino AS, Kauert G (1999) Gas chromatographic-mass spectrometric detection of anhydroecgonine methyl ester (methylecgonidine) in human serum as evidence of recent smoking of crack. J Chromatogr B Biomed Sci Appl 735: 127–132

    Article  CAS  PubMed  Google Scholar 

  88. Paul BD, McWhorter LK, Smith ML (1999) Electron ionization mass fragmentometric detection of urinary ecgonidine, a hydrolytic product of methylecgonidine, as an indicator of smoking cocaine. J Mass Spectrom 34: 651–660

    Article  CAS  PubMed  Google Scholar 

  89. Linder MW, Bosse GM, Henderson MT, Midkiff G, Valdes R (2000) Detection of cocaine metabolite in serum and urine: frequency and correlation with medical diagnosis. Clin Chim Acta 295: 179–185

    Article  CAS  PubMed  Google Scholar 

  90. Cone EJ, Sampson-Cone AH, Darwin WD, Huestis MA, Oyler JM (2003) Urine testing for cocaine abuse: Metabolic and excretion patterns following different routes of administration and methods for detection of false-negative results. J Anal Toxicol 27: 386–401

    CAS  PubMed  Google Scholar 

  91. Felli M, Martello S, Marsili R, Chiarotti M (2005) Disappearance of cocaine from human hair after abstinence. Forensic Sci Int 154: 96–98

    Article  CAS  PubMed  Google Scholar 

  92. Shah JC, Mason WD (1990) Plasma codeine and morphine concentrations after a single oral dose of codeine phosphate. J Clin Pharmacol 30: 764–766

    CAS  PubMed  Google Scholar 

  93. Moriya F, Chan KM, Hashimoto Y (1999) Concentrations of morphine and codeine in urine of heroin abusers. Leg Med (Tokyo) 1: 140–144

    CAS  Google Scholar 

  94. Rook EJ, Huitema AD, van den Brink W, Hillebrand MJ, van Ree JM, Beijnen JH (2006) Screening for illicit heroin use in patients in a heroin-assisted treatment program. J Anal Toxicol 30: 390–394

    CAS  PubMed  Google Scholar 

  95. Compton WM, Volkow ND (2006) Major increases in opioid analgesic abuse in the United States: Concerns and strategies. Drug Alcohol Depend 81: 103–107

    Article  PubMed  Google Scholar 

  96. Rohrig TP, Moore C (2003) The determination of morphine in urine and oral fluid following ingestion of poppy seeds. J Anal Toxicol 27: 449–452

    CAS  PubMed  Google Scholar 

  97. Ceder G, Jones AW (2001) Concentration ratios of morphine to codeine in blood of impaired drivers as evidence of heroin use and not medication with codeine. Clin Chem 47: 1980–1984

    CAS  PubMed  Google Scholar 

  98. Romano G, Barbera N, Spadaro G, Valenti V (2003) Determination of drugs of abuse in hair: Evaluation of external heroin contamination and risk of false positives. Forensic Sci Int 131: 98–102

    Article  CAS  PubMed  Google Scholar 

  99. Hill V, Cairns T, Cheng CC, Schaffer M (2005) Multiple aspects of hair analysis for opiates: Methodology, clinical and workplace populations, codeine, and poppy seed ingestion. J Anal Toxicol 29: 696–703

    CAS  PubMed  Google Scholar 

  100. The DASIS Report Trends in Admissions for PCP: 1993–2003. Substance Abuse & Mental Health Services Administration (SAMHSA) (online available at: http://www.oas.samhsa.gov/2k5/PCPtx/PCPtx.htm; accessed May 19, 2009)

    Google Scholar 

  101. Santos PM, López-García P, Navarro JS, Fernández AS, Sádaba B, Vidal JP (2007) False positive phencyclidine results caused by venlafaxine. Am J Psychiatry 164: 349

    Article  PubMed  Google Scholar 

  102. Schier J (2000) Avoid unfavorable consequences: Dextromethorpan can bring about a false-positive phencyclidine urine drug screen. J Emerg Med 18: 379–381

    Article  CAS  PubMed  Google Scholar 

  103. Moeller KE, Lee KC, Kissack JC (2008) Urine drug screening: practical guide for clinicians. Mayo Clin Proc 2008 83: 66–76

    Article  CAS  Google Scholar 

  104. Kala SV, Harris SE, Freijo TD, Gerlich S (2008) Validation of analysis of amphetamines, opiates, phencyclidine, cocaine, and benzoylecgonine in oral fluids by liquid chromatography-tandem mass spectrometry. J Anal Toxicol 32: 605–611

    CAS  PubMed  Google Scholar 

  105. Nakahara Y, Takahashi K, Sakamoto T, Tanaka A, Hill VA, Baumgartner WA (1997) Hair analysis for drugs of abuse. XVII. Simultaneous detection of PCP, PCHP, and PCPdiol in human hair for confirmation of PCP use. J Anal Toxicol 21: 356–362

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Vearrier, D., Curtis, J.A., Greenberg, M.I. (2010). Biological testing for drugs of abuse. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 100. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8338-1_14

Download citation

Publish with us

Policies and ethics