Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 100))

Abstract

Inhalation of gases, vapors and can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. The large number of chemicals and complex mixtures present in indoor and outdoor air coupled with the introduction of new materials such as nanoparticles and nanofibers, is an area of growing concern for human health. Animal-based assays have been used to study the toxic effects of chemicals for many years. However, even so, very little is known about the potential toxicity of the vast majority of inhaled chemicals. As well as new or refined OECD test guidelines, continuing scientific developments are needed to improve the process of safety evaluation for the vast number of chemicals and inhaled materials. Although studying the toxic effects of inhaled chemicals is more challenging, promising in vitro exposure techniques have been recently developed that offer new possibilities to test biological activities of inhaled chemicals under biphasic conditions at the air liquid interface. This chapter gives an overview of inhalation toxicology as well as focusing on the potential application of in vitro methods for toxicity testing of airborne pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferries BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg MI, Phillips SD (2003) A brief history of occupational, industrial and environmental toxicology. In: MI Greenberg, RJ Hamilton, SD Phillips, GJ McCluskey (eds): Occupational, Industrial and Environmental Toxicology, 2nd edn., Mosby, Philadelphia, PA, 2–5

    Google Scholar 

  3. Winder C, Stacey NH (2004) Working examples on occupational toxicology. In: C Winder, NH Stacey (eds): Occupational Toxicology, 2nd edn., CRC Press, Boca Raton, FL, 549–577

    Google Scholar 

  4. NTP (1984) Toxicology Testing Strategies to Determine Needs and Priorities. National Toxicology Program, National Research Council, Washington DC

    Google Scholar 

  5. Agrawal MR, Winder C (1996) The frequency and occurrence of LD50 values for materials in the workplace. J Appl Toxicol 16:407–422

    Article  CAS  PubMed  Google Scholar 

  6. EPA (1998) Chemical Hazard Availability Study. The Environ mental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC

    Google Scholar 

  7. Faustman E, Omenn G (2001) Risk Assessment. In: CD Klassen (ed.): Casarett and Doull’s Toxicology: The Basic Science of Poisons. 6th edn., McGraw-Hill, New York, 83–104

    Google Scholar 

  8. Costa DL (2008) Alternative test methods in inhalation toxicology: Challenges and opportunities. Exp Toxicol Pathol 60: 105–109

    Article  CAS  PubMed  Google Scholar 

  9. Blaauboer BJ (2002) The applicability of in vitro-derived data in hazard identification and characterisation of chemicals. Environ Toxicol Pharm 11: 213–225

    Article  CAS  Google Scholar 

  10. Raabe OG (1999) Respiratory exposure to air pollutants. In: DL Swift, WM Foster (eds): Air Pollutants and the Respiratory Tract, Marcel Dekker, New York, 39–73

    Google Scholar 

  11. Ghorbanli M, Bakand Z, Bakhshi Khaniki G, Bakand S (2007) Air pollution effects on the activity of antioxidant enzymes in Nerium oleander and Robinia pseudo acacia plants in Tehran. Iranian J Environ Health Sci Eng 4: 157–162

    CAS  Google Scholar 

  12. Lioy PJ, Zhang J (1999) Air pollution. In: DL Swift, WM Foster (eds): Air Pollutants and the Respiratory Tract, Marcel Dekker, New York, 1–38

    Google Scholar 

  13. Costa DL (2001) Air pollution. In: CD Klaassen (ed.): Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th edn., McGraw-Hill, New York, 979–1012

    Google Scholar 

  14. Hayes A, Bakand S, Winder C (2007) Novel in vitro exposure techniques for toxicity testing and biomonitoring of airborne contaminants. In: U Marx, V Sandig (eds): Drug Testing: In Vitro-Breakthroughs and Trends in Cell Culture Technology, Wiley-VCH, Berlin, 103–124

    Google Scholar 

  15. Beckett WS (1999) Detecting respiratory tract responses to air pollutants. In: DL Swift, WM Foster (eds): Air Pollutants and the Respiratory Tract, Marcel, New York, 105–118

    Google Scholar 

  16. Boulet LP, Bowie D (1999) Acute occupational respiratory diseases. In: CE Mapp (ed.): Occupational Lung Disorders, European Respiratory Society, Huddersfield, UK, 320–346

    Google Scholar 

  17. Hext PM (2000) Inhalation toxicology. In: B Ballantyne, TC Marrs, T Syversen (eds): General and Applied Toxicology, Vol. 1, 2nd edn., Macmillan, London, 587–601

    Google Scholar 

  18. Witschi H, Last JA (2001) Toxic responses of the respiratory system. In: CD Klaassen (ed.): Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th edn., McGraw-Hill, New York, 515–534

    Google Scholar 

  19. Brouder J, Tardif R (1998) Absorption. In: P Wexler (ed.): Encyclopedia of Toxicology, Vol. 1, Academic Press, San Diego, CA, 1–7

    Google Scholar 

  20. Winder C (2004) Occupational respiratory diseases. In: C Winder, NH Stacey (eds): Occupational Toxicology, 2nd edn., CRC Press, Boca Raton, FL, 71–114

    Google Scholar 

  21. Lambre CR, Aufderheide M, Bolton RE, Fubini B, Haagsman HP, Hext PM, Jorissen M, Landry Y, Morin JP, Nemery B, Nettesheim P, Pauluhn J, Richards RJ, Vickers AEM, Wu R (1996) In vitro tests for respiratory toxicity, the report and recommendations of ECVAM workshop 18. Altern Lab Anim 24: 671–681

    Google Scholar 

  22. Valentine R, Kennedy GL (2001) Inhalation toxicology. In: A Wallace Hayes (ed.): Principles and Methods of Toxicology, 4th edn., Taylor and Francis, Philadelphia, PA, 1085–1143

    Google Scholar 

  23. Witschi HP, Brain JD (1985) Toxicology of Inhaled Materials: General Principles of Inhalation Toxicology Handbook of Experimental Pharmacology, Vol. 75, Springer, Secaucus, NJ

    Google Scholar 

  24. Rozman KK, Klaassen CD (2001) Absorption, distribution and excretion of toxicants. In: Klaassen CD (ed.): Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th edn., McGraw-Hill, New York, 105–132

    Google Scholar 

  25. IARC (2004) IARC Classifies Formaldehyde as Carcinogenic to Humans. International Agency for Research on Cancer, Press Release, N 153

    Google Scholar 

  26. Asgharian B, Wood R, Schlesinger RB (1995) Empirical modelling of particle deposition in the alveolar region of the lungs: A basis for interspecies extrapolation. Fundam Appl Toxicol 27: 232–238

    Article  CAS  PubMed  Google Scholar 

  27. Siegmann K, Scherrer L, Siegmann HC (1999) Physical and chemical properties of airborne nanoscale particles and how to measure their impact on human health. J Mol Struct 458: 191–201

    CAS  Google Scholar 

  28. Lundborg M, Johard U, Lastbom L, Gerde P, Camner P (2001) Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. Environ Res 86: 244–253

    Article  CAS  PubMed  Google Scholar 

  29. Bergeron S, Archambault D (2005) Canadian Stewardship Practices for Environmental Nanotechnology. Science-Metrix, Canada (http://www.science-metrix.com/eng/reports_2005_t.htm)

    Google Scholar 

  30. Mühlfeld C, Gehr P, Rothen-Rutishauser B (2008) Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 138: 387–391

    PubMed  Google Scholar 

  31. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823–839

    PubMed  Google Scholar 

  32. Schlesinger RB (2000) Disposition of inhaled particles and gases. In: M Cohen, J Zelikoff, RB Schlesinger (eds): Pulmonary Immunotoxicology. Kluwer Academic Publishers, Boston, MA, 85–106

    Google Scholar 

  33. Eaton DL (2005) Toxicology. In: L Rosenstock, MR Cullen, CA Brodkin, CA Redlich (eds): Textbook of Clinical Occupational and Environmental Medicine, 2nd edn., Elsevier Saunders, Philadelphia, PA, 83–118

    Google Scholar 

  34. Vincent JH (1995) Aerosol Science for Industrial Hygienists. Elsevier Science, Pergamon Press, Oxford

    Google Scholar 

  35. Johnson D, Swift D (1997) Sampling and sizing particles. In: SR Dinardi (ed.): The Occupational Environment — Its Evaluation and Control, American Industrial Hygienists Association, AIHA Press, Fairfax, VA, 245–261

    Google Scholar 

  36. William PL, Burson JL (1985) Industrial Toxicology — Safety and Health Applications in the Workplace. Van Nostard Reinhold, New York

    Google Scholar 

  37. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E (2006) The potential risks of nanomaterials: A review carried out for ECETOC. Partic Fibre Toxicol 3: 1–35

    Article  CAS  Google Scholar 

  38. David A, Wagner GR (1998) Respiratory system. In: JM Stellman (ed.): Encyclopedia of Occupational Health and Safety. 4th edn., Geneva, International Labour Office, 10.1–10.7

    Google Scholar 

  39. Winder C (2004) Toxicology of gases, vapours and particulates. In: C Winder, NH Stacey (eds): Occupational Toxicology, 2nd edn., CRC Press, Boca Raton, FL, 399–424

    Google Scholar 

  40. Shusterman D (2002) Asphyxiation. In: DJ Hendrick, PS Burge, WS Beckett, A Chung (eds): Occupational Disorders of the Lung: Recognition, Management and Prevention, WB Saunders, London, 279–303

    Google Scholar 

  41. Hendrick DJ, Burge PS (2002) Asthma. In: DJ Hendrick, PS Burge, WS Beckett, A Churg (eds): Occupational Disorders of the Lung: Recognition, Management and Prevention, WB Saunders, London, 33–76

    Google Scholar 

  42. Lizarralde SM, Wake B, Thompson V, Weisman RS (2003) Jewelers. In: MI Greenberg, RJ Hamilton, SD Phillips, GJ McCluskey (eds): Occupational, Industrial, and Environmental Toxicology, 2nd edn., Mosby, Philadelphia, PA, 198–215

    Google Scholar 

  43. Tarlo SM, Chan-Yeung M (2005) Occupational asthma. In: L Rosenstock, MR Cullen, CA Brodkin, CA Redlich (eds): Textbook of Clinical Occupational and Environmental Medicine, 2nd edn., Elsevier Saunders, Philadelphia, PA, 293–308

    Google Scholar 

  44. Koenig JQ, Luchtel DL (1997) Respiratory responses to inhaled toxicants. In: EJ Massaro (ed.): Handbook of Human Toxicology, CRC Press, Boca Raton, FL, 551–606

    Google Scholar 

  45. Mapp C (1999) Occupational Lung Disorders. European Respiratory Society Journals, Huddersfield, UK

    Google Scholar 

  46. NTP (2002) The National Toxicology Program Annual Plan Fiscal Year 2001 U.S. Department of Health and Human Services. Public Health Service. NIH Publication No. 02-5092

    Google Scholar 

  47. Stenton C (2002) Chronic obstructive pulmonary disease (COPD). In: DJ Hendrick, PS Burge, WS Beckett, A Churg (eds): Occupational Disorders of the Lung: Recognition, Management and Prevention, WB Saunders, London, 77–91

    Google Scholar 

  48. Mapel W Coultas D (2002) Disorders due to minerals other than silica, coal, and asbestos, and to metals. In: DJ Hendrick, PS Burge, WS Beckett, A Churg (eds): Occupational Disorders of the Lung: Recognition, Management and Prevention, WB Saunders, London, 163–190

    Google Scholar 

  49. Meredith S, Blank PD (2002) Surveillance: Clinical and epidemiological perspectives. In: DJ Hendrick, PS Burge, WS Beckett, A Churg (eds): Occupational Disorders of the Lung: Recognition, Management and Prevention, WB Saunders, London, 7–24

    Google Scholar 

  50. McClellan RO (1999) Health risk assessments and regulatory considerations for air pollutants. In: DL Swift, WM Foster (eds): Air Pollutants and the Respiratory Tract. Marcel Dekker, New York, 289–338

    Google Scholar 

  51. Thorne PS (2001) Occupational toxicology. In: CD Klaassen (ed.): Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th edn., McGraw-Hill, New York, 1123–1140

    Google Scholar 

  52. Arts JH, Muijser H, Jonker D, van de Sandt JJ, Bos PM, Feron VJ (2008) Inhalation toxicity studies: OECD guidelines in relation to REACH and scientific developments. Exp Toxicol Pathol 60: 125–133

    Article  CAS  PubMed  Google Scholar 

  53. Barile FA (1994) Introduction to In Vitro Cytotoxicity, Mechanisms and Methods. CRC Press, Boca Raton, FL

    Google Scholar 

  54. Miller GC, Klonne DR (1997) Occupational exposure limits. In: SR DiNardi (ed.): The Occupational Environment — Its Evaluation and Control, American Industrial Hygienists Association, AIHA Press, Fairfax, VA, 21–42

    Google Scholar 

  55. OECD (2004) Chemicals Testing: OECD Guidelines for the Testing of Chemicals. Section 4: Health Effects. Organisation for Economic Co-operation and Development, http://www.oecd.org/ document/55/0,2340,en_2649_34377_2349687_1_1_1_1,00.html (accessed February 2009)

    Google Scholar 

  56. Ekwall B (1983) Screening of toxic compounds in mammalian cell cultures. Ann NY Acad Sci 407: 64–77

    Article  CAS  PubMed  Google Scholar 

  57. Balls M, Clothier RH (1992) Cytotoxicity assays for intrinsic toxicity and irritancy. In: RR Watson (ed.): In Vitro Methods of Toxicology. CRC Press, Boca Raton, FL, 37–52

    Google Scholar 

  58. Anderson D, Russell T (1995) The Status of Alternative Methods in Toxicology. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  59. Barile FA (1997) Continuous cell lines as a model for drug toxicology assessment. In: JV Castell, MJ Gomez-Lechon (eds): In Vitro Methods in Pharmaceutical Research, Academic Press, San Diego, 33–54

    Google Scholar 

  60. Zucco F, de Angelis I, Stammati A (1998) Cellular models for in vitro toxicity testing. In: M Clynes (ed.): Animal Cell Culture Techniques, Springer Lab Manual, Springer, Berlin, 395–422

    Google Scholar 

  61. Doyle A, Griffiths JB (2000) Cell and Tissue Culture for Medical Research. John Wiley & Sons, UK

    Google Scholar 

  62. Wilson AP (2000) Cytotoxicity and viability assays. In: JRW Masters (ed.): Animal Cell Culture, 3rd edn., Oxford University Press, New York, 175–219

    Google Scholar 

  63. Zucco F, de Angelis I, Testai E, Stammati A (2004) Toxicology investigations with cell culture systems: 20 years after. Toxicol In Vitro 18: 153–163

    Article  CAS  PubMed  Google Scholar 

  64. Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, Carere A, Kevekordes S, Lhuguenot JC, Pieters R, Kleiner J (2002) Methods of in vitro toxicology. Food Chem Toxicol 40: 193–236

    Article  CAS  PubMed  Google Scholar 

  65. Gad SC (2000) In Vitro Toxicology, Taylor and Francis, New York

    Google Scholar 

  66. Faustman EM, Omenn GS (2001) Risk assessment. In: CD Klaassen (ed.): Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th edn., McGraw-Hill, New York, 83–104

    Google Scholar 

  67. Aufderheide M (2005) Direct exposure methods for testing native atmospheres. Exp Toxicol Pathol 57: 213–226

    Article  CAS  PubMed  Google Scholar 

  68. Bakand S, Winder C, Khalil C, Hayes A (2005) Toxicity assessment of industrial chemicals and airborne contaminants: Transition from in vivo to in vitro test methods: A review. Inhal Toxicol 17:775–787

    Article  CAS  PubMed  Google Scholar 

  69. Nadeau D, Vincent R, Kumarathasan P, Brook J, Dufresne A (1995) Cytotoxicity of ambient air particles to rat lung macrophages: Comparison of cellular and functional assays. Toxicol In Vitro 10: 161–172

    Article  Google Scholar 

  70. Governa M, Valentino M, Amati M, Visona I, Botta GC, Marcer G, Gemignani C (1997) Biological effects of contaminated silicon carbide particles from a work station in a plant producing abrasives. Toxicol In Vitro 11: 201–207

    Article  CAS  PubMed  Google Scholar 

  71. Goegan P, Vincent R, Kumarathasan P, Brook JR (1998) Sequential in vitro effects of airborne particles in lung macrophages and reporter Cat-gene cell lines. Toxicol In Vitro 12: 25–37

    Article  CAS  Google Scholar 

  72. Baeza-Squiban A, Bonvallot V, Boland S, Marano F (1999) Diesel exhaust particles increase NF-κB DNA binding activity and c-Fos proto-oncogene expression in human bronchial epithelial cells. Toxicol In Vitro 13: 817–822

    Article  CAS  PubMed  Google Scholar 

  73. Becker S, Soukup JM, Gallagher JE (2002) Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol In Vitro 16: 209–221

    Article  CAS  PubMed  Google Scholar 

  74. Takano Y, Taguchi T, Suzuki I, Balis JU, Kazunari Y (2002) Cytotoxicity of heavy metals on primary cultured alveolar type II cells. Environ Res 89: 138–145

    Article  CAS  PubMed  Google Scholar 

  75. Riley MR, Boesewetter DE, Kim AM, Sirvent FP (2003) Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells. Toxicology 190: 171–184

    Article  CAS  PubMed  Google Scholar 

  76. Okeson CD, Riley MR, Riley-Saxton E (2004) In vitro alveolar cytotoxicity of soluble components of airborne particulate matter: Effects of serum on toxicity of transition metals. Toxicol In Vitro 18: 673–680

    Article  CAS  PubMed  Google Scholar 

  77. Diabaté S, Mülhopt S, Paur HR, Krug HF (2002) Pro-inflammatory effects in lung cells after exposure to fly ash aerosol via the atmosphere or the liquid phase. Ann Occup Hyg 46 Suppl 1: 382–385

    Google Scholar 

  78. Hamers T, van Schaardenburg MD, Felzel EC, Murk AJ, Koeman JH (2000) The application of reporter gene assay for the determination of the toxic potency of diffuse air pollution. Sci Total Environ 262: 159–174

    Article  CAS  PubMed  Google Scholar 

  79. Yamaguchi T, Yamazaki H (2001) Cytotoxicity of airborne particulates sampled roadside in rodent and human lung fibroblasts. J Health Sci 47: 272–277

    Article  CAS  Google Scholar 

  80. Alfaro-Moreno E, Martinez L, Garcia-Cuellar C, Bonner JC, Murray JC, Rosas I, Rosales SP, Osornio-Vargas AR (2002) Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ Health Perspect 110: 715–720

    PubMed  Google Scholar 

  81. Glowala M, Mazurek A, Piddubnyak V, Fiszer-Kierzkowska A, Michalska J, Krawczyk Z (2002) HSP70 overexpression increases resistance of V79 cells to cytotoxicity of airborne pollutants, but does not protect the mitotic spindle against damage caused by airborne toxins. Toxicology 170: 211–219

    Article  CAS  PubMed  Google Scholar 

  82. Baulig A, Sourdeval M, Meyer M, Marano F, Baeza-Squiban A (2003) Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles. Toxicol In Vitro 17: 567–573

    Article  CAS  PubMed  Google Scholar 

  83. Bombick DW, Putnam KP, Doolittle DJ (1998) Comparative cytotoxicity studies of smoke condensates from different types of cigarettes and tobaccos. Toxicol In Vitro 12: 241–249

    Article  CAS  PubMed  Google Scholar 

  84. Bombick BR, Murli H, Avalos JT, Bombick DW, Morgan WT, Putnam KP, Doolittle DJ (1998) Chemical and biological studies of a new cigarette that primarily heats tobacco. Part 2. In vitro toxicology of mainstream smoke condensate. Food Chem Toxicol 36: 183–190

    Article  CAS  PubMed  Google Scholar 

  85. McKarns SC, Bombic DW, Morton MJ, Doolittle DJ (2000) Gap junction intercellular communication and cytotoxicity in normal human cells after exposure to smoke condensates from cigarettes that burn or primarily heat tobacco. Toxicol In Vitro 14: 41–51

    Article  CAS  PubMed  Google Scholar 

  86. Putnam KP, Bombic DW, Doolittle DJ (2002) Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol In Vitro 16: 599–607

    Article  CAS  PubMed  Google Scholar 

  87. Bakand S, Hayes AJ, Winder C, Khalil C, Markovic B (2005) In vitro cytotoxicity testing of airborne formaldehyde collected in serum-free culture media. Toxicol Indust Health 21: 147–154

    Article  CAS  Google Scholar 

  88. Ritter D, Knebel J, Aufderheide M (2001) In vitro exposure of isolated cells to native gaseous compounds — Development and validation of an optimized system for human lung cells. Exp Toxicol Pathol 53: 373–386

    Article  CAS  PubMed  Google Scholar 

  89. Cardile V, Jiang X, Russo A, Casella F, Renis M, Bindoni M (1995) Effects of ozone on some biological activities of cells in vitro. Cell Biol Toxicol 11: 11–21

    CAS  PubMed  Google Scholar 

  90. Blanquart C, Giuliani I, Houcine O, Guennou C, Marano F, Jeulin C (1995) In vitro exposure of rabbit trachelium to SO2: Effects on morphology and ciliarity beating. Toxicol In Vitro 9: 123–132

    Article  CAS  PubMed  Google Scholar 

  91. Rusznak C, Devalia JL, Sapsford RJ, Davies RJ (1996) Ozone-induced mediator release from human bronchial epithelial cells in vitro and the influence of nedocromil sodium. Eur Respir J 9: 2298–2305

    Article  CAS  PubMed  Google Scholar 

  92. Mückter H, Zwing M, Bäder S, Marx T, Doklea E, Liebl B, Fichtl B, Georgieff M (1998) A novel apparatus for the exposure of cultured cells to volatile agents. J Pharmacol Toxicol Methods 40: 63–69

    Article  PubMed  Google Scholar 

  93. Shiraishi F, Hashimoto S, Bandow H (1986) Induction of sister-chromatid exchanges in Chinese hamster V79 cells by exposure to the photochemical reaction products of toluene plus NO2 in the gas phase. Mutat Res 173: 135–139

    Article  CAS  PubMed  Google Scholar 

  94. DelRaso NJ (1992) In vitro methods for assessing chemical or drug toxicity and metabolism in primary hepatocytes. In: RR Watson (ed.): In Vitro Methods of Toxicology, CRC Press, Boca Raton, FL, 176–201

    Google Scholar 

  95. Morin JP, Fouquet F, Monteil C, Le Prieur E, Vaz E, Dionnet F (1999) Development of a new in vitro system for continuous in vitro exposure of lung tissue to complex atmospheres: Application to diesel exhaust toxicology. Cell Biol Toxicol 15: 143–152

    Article  CAS  PubMed  Google Scholar 

  96. Bombick DW, Ayres PH, Putnam K, Bombick BR, Doolittle DJ (1998) Chemical and biological studies of a new cigarette that primarily heats tobacco. Part 3. In vitro toxicity of whole smoke. Food Chem Toxicol 36: 191–197

    Article  CAS  PubMed  Google Scholar 

  97. Chen LC, Fang CP, Qu QS, Fine JM, Schlesinger RB (1993) A novel system for the in vitro exposure of pulmonary cells to acid sulfate aerosols. Fund Appl Toxicol 20: 170–176

    Article  Google Scholar 

  98. Knebel J, Ritter D, Aufderheide M (2002) Exposure of human lung cells to native diesel motor exhaust-development of an optimized in vitro test strategy. Toxicol In Vitro 16: 185–192

    Article  CAS  PubMed  Google Scholar 

  99. Aufderheide M, Knebel J, Ritter D (2003) Novel approaches for studying pulmonary toxicity in vitro. Toxicol Lett 140–141: 205–211

    Article  PubMed  CAS  Google Scholar 

  100. Bakand S, Hayes A, Winder C (2007) Comparative in vitro cytotoxicity assessment of selected gaseous compounds in human alveolar epithelial cells. Toxicol In Vitro 21: 1341–1347

    Article  CAS  PubMed  Google Scholar 

  101. Bakand S, Hayes A, Winder C (2007) An integrated in vitro approach for toxicity testing of airborne contaminants. J Toxicol Environ Health A 70: 1604–1612

    Article  CAS  PubMed  Google Scholar 

  102. Potera C (2007) A new approach for testing airborne pollutants. Environ Health Perspect 115: A149–151

    Google Scholar 

  103. Stark DM, Shopsis C, Borenfreund E, Babich H (1986) Progress and problems in evaluating and validating alternative assays in toxicology. Food Chem Toxicol 24: 449–455

    Article  CAS  PubMed  Google Scholar 

  104. Frazier JM, Bradlaw JA (1989) Technical problems associated with in vitro toxicity testing systems. A Report of the CAAT Technical Workshop of May 17–18, 1989. The Johns Hopkins Center for Alternatives to Animal Testing (CAAT), Baltimore, MD

    Google Scholar 

  105. Dierickx PJ (2003) Evidence for delayed cytotoxicity effects following exposure of rat hepatoma-derived Fa32 cells: Implications for predicting human acute toxicity. Toxicol In Vitro 17: 797–801

    Article  CAS  PubMed  Google Scholar 

  106. Bakand S, Winder C, Khalil C, Hayes A (2006) A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds. J Environ Monit 8: 100–105

    Article  CAS  PubMed  Google Scholar 

  107. Lang DS, Jörres RA, Mücke M, Siegfried W, Magnussen H (1998) Interactions between human bronchoepithelial cells and lung fibroblasts after ozone exposure in vitro. Toxicol Lett 96–97: 13–24

    Article  PubMed  Google Scholar 

  108. Aufderheide M, Mohr U (2000) CULTEX — An alternative technique for cultivation and exposure of cells of the respiratory tract to the airborne pollutants at the air/liquid interface. Exp Toxicol Pathol 52: 265–270

    CAS  PubMed  Google Scholar 

  109. Bakand S, Winder C, Khalil C, Hayes A (2006) An experimental in vitro model for dynamic direct exposure of human cells to airborne contaminants. Toxicol Lett 165: 1–10

    Article  CAS  PubMed  Google Scholar 

  110. Knebel J, Ritter D, Aufderheide M (1998) Development of an in vitro system for studying effects of native and photochemically transformed gaseous compounds using an air/liquid culture technique. Toxicol Lett 96–97: 1–11

    Article  PubMed  Google Scholar 

  111. Lestari F, Markovic B, Green AR, Chattopadhyay G, Hayes AJ (2006) Comparative assessment of three in vitro exposure methods for combustion toxicity. J Appl Toxicol 26: 99–114

    Article  CAS  PubMed  Google Scholar 

  112. Lestari F, Green AR, Chattopadhyay G, Hayes AJ (2006) An alternative method for fire smoke toxicity assessment using human lung cells. Fire Safe J 41: 605–615

    Article  CAS  Google Scholar 

  113. Warheit DB (2004) Nanoparticles health impacts. Mater Today 7: 32–35

    Article  CAS  Google Scholar 

  114. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Partic Fibre Toxicol 2: 10

    Article  CAS  Google Scholar 

  115. Suh WH, Suslick KS, Stucky GD, Suh YH (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87: 133–170

    Article  CAS  PubMed  Google Scholar 

  116. Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186: 166–173

    Article  CAS  PubMed  Google Scholar 

  117. Karn B, Masciangioli T, Zhang W, Colvin V, Alivisatos P (2005) Nanotechnology and the Environment; Applications and Implications. American Chemical Society, Washington, DC

    Google Scholar 

  118. Liu W (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102: 1–7

    Article  CAS  PubMed  Google Scholar 

  119. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311: 622–627

    Article  CAS  PubMed  Google Scholar 

  120. Renn O, Roco MC (2006) White Paper on Nanotechnology Risk Governance. International Risk Governance Council, Geneva

    Google Scholar 

  121. Dechsakulthorn F, Hayes A, Bakand S, Joeng L, Winder C (2008) In vitro cytotoxicity of selected nanoparticles using human skin fibroblasts. Altern Animal Test Exper — AATEX 14: 397–400

    Google Scholar 

  122. Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V (2007) An in vitro study of the potential of carbon nanotubes and nanofibers to induce inflammatory mediators and frustrated phagocytosis. Carbon 45: 1743–1756

    Article  CAS  Google Scholar 

  123. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61: 727–728

    Article  CAS  PubMed  Google Scholar 

  124. Seaton A (2006) Nanotechnology and the occupational physician. Occup Med 56: 312–316

    Article  Google Scholar 

  125. Tolstoshev A (2006) Nanotechnology, Assessing the Environmental Risks for Australia. Earth Policy Centre, University of Melbourne, Australia

    Google Scholar 

  126. Gojova A, Guo B, Kota R, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effects of particle composition. Environ Health Perspect 115: 403–409

    Article  CAS  PubMed  Google Scholar 

  127. Cohen BS, McCammon CS Jr (2001) Air Sampling Instruments for Evaluation of Atmospheric Contaminants. 9th edn., ACGIH, Cincinnati, OH

    Google Scholar 

  128. Englert CB (2007) Nanomaterials and the environment: Uses, methods and measurement. J Environ Monit 9: 1154–1161

    Article  CAS  Google Scholar 

  129. Drobne D (2007) Nanotoxicology for safe and sustainable nanotechnology. Arh Hig Rada Toksikol 58: 471–478

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Hayes, A., Bakand, S. (2010). Inhalation toxicology. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 100. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8338-1_13

Download citation

Publish with us

Policies and ethics